ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.14500
  4. Cited By
MolGenSurvey: A Systematic Survey in Machine Learning Models for
  Molecule Design

MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design

28 March 2022
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
    AI4CE
ArXivPDFHTML

Papers citing "MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design"

50 / 131 papers shown
Title
Generating 3D Molecular Structures Conditional on a Receptor Binding
  Site with Deep Generative Models
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models
Tomohide Masuda
Matthew Ragoza
D. Koes
DiffM
64
53
0
16 Oct 2020
3DMolNet: A Generative Network for Molecular Structures
3DMolNet: A Generative Network for Molecular Structures
V. Nesterov
Mario Wieser
Volker Roth
AI4CE
221
33
0
08 Oct 2020
MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization
MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization
Tianfan Fu
Cao Xiao
Xinhao Li
Lucas Glass
Jimeng Sun
87
81
0
05 Oct 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
70
216
0
15 Jul 2020
Guiding Deep Molecular Optimization with Genetic Exploration
Guiding Deep Molecular Optimization with Genetic Exploration
SungSoo Ahn
Junsup Kim
Hankook Lee
Jinwoo Shin
79
74
0
04 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
179
636
0
01 Jul 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
625
18,096
0
19 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
153
692
0
18 Jun 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
122
293
0
17 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
90
217
0
09 Jun 2020
On the Bottleneck of Graph Neural Networks and its Practical
  Implications
On the Bottleneck of Graph Neural Networks and its Practical Implications
Uri Alon
Eran Yahav
GNN
88
688
0
09 Jun 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular
  Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
64
83
0
18 May 2020
Principal Neighbourhood Aggregation for Graph Nets
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lio
Petar Velickovic
GNN
109
667
0
12 Apr 2020
Meta-Learning GNN Initializations for Low-Resource Molecular Property
  Prediction
Meta-Learning GNN Initializations for Low-Resource Molecular Property Prediction
Cuong C. Nguyen
Constantine Kreatsoulas
K. Branson
AI4CE
41
14
0
12 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
122
875
0
06 Mar 2020
Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
  Learning of Deep Spiking Neural Network
Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal Learning of Deep Spiking Neural Network
Haowen Fang
Amar Shrestha
Ziyi Zhao
Qinru Qiu
48
120
0
19 Feb 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
62
85
0
18 Feb 2020
The Synthesizability of Molecules Proposed by Generative Models
The Synthesizability of Molecules Proposed by Generative Models
Wenhao Gao
Connor W. Coley
63
256
0
17 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
76
288
0
08 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
168
438
0
26 Jan 2020
Analyzing and Improving the Image Quality of StyleGAN
Analyzing and Improving the Image Quality of StyleGAN
Tero Karras
S. Laine
M. Aittala
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
284
5,815
0
03 Dec 2019
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
101
68
0
23 Nov 2019
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug
  Discovery
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery
Shion Honda
Shoi Shi
H. Ueda
MedIm
71
175
0
12 Nov 2019
Graph Residual Flow for Molecular Graph Generation
Graph Residual Flow for Molecular Graph Generation
Shion Honda
Hirotaka Akita
Katsuhiko Ishiguro
Toshiki Nakanishi
Kenta Oono
55
42
0
30 Sep 2019
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring
  the Chemical Space
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
50
131
0
25 Sep 2019
A Generative Model for Molecular Distance Geometry
A Generative Model for Molecular Distance Geometry
G. Simm
José Miguel Hernández-Lobato
GAN
77
107
0
25 Sep 2019
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
92
123
0
05 Aug 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
  Learning via Mutual Information Maximization
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
145
862
0
31 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,916
0
12 Jul 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
121
208
0
02 Jun 2019
MolecularRNN: Generating realistic molecular graphs with optimized
  properties
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
69
167
0
31 May 2019
Strategies for Pre-training Graph Neural Networks
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSL
AI4CE
116
1,404
0
29 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
100
192
0
28 May 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,317
0
02 Apr 2019
Molecular geometry prediction using a deep generative graph neural
  network
Molecular geometry prediction using a deep generative graph neural network
Elman Mansimov
Omar Mahmood
Seokho Kang
Kyunghyun Cho
88
188
0
31 Mar 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
73
329
0
11 Mar 2019
Mol-CycleGAN - a generative model for molecular optimization
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
53
250
0
06 Feb 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
583
10,555
0
12 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
85
229
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
257
651
0
29 Nov 2018
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph
  Generation
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation
Rim Assouel
Mohamed Ahmed
Marwin H. S. Segler
Amir Saffari
Yoshua Bengio
67
55
0
24 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
109
708
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
84
540
0
19 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
94,891
0
11 Oct 2018
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
240
7,653
0
01 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
295
3,134
0
09 Jul 2018
N-Gram Graph: Simple Unsupervised Representation for Graphs, with
  Applications to Molecules
N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules
Shengchao Liu
M. F. Demirel
Yingyu Liang
GNN
NAI
54
195
0
24 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
287
902
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
177
926
0
30 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
75
456
0
23 May 2018
Previous
123
Next