ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11678
  4. Cited By
Bayesian Model Selection, the Marginal Likelihood, and Generalization
v1v2v3 (latest)

Bayesian Model Selection, the Marginal Likelihood, and Generalization

23 February 2022
Sanae Lotfi
Pavel Izmailov
Gregory W. Benton
Micah Goldblum
A. Wilson
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Bayesian Model Selection, the Marginal Likelihood, and Generalization"

50 / 54 papers shown
Title
Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective
Learning the Regularization Strength for Deep Fine-Tuning via a Data-Emphasized Variational Objective
Ethan Harvey
Mikhail Petrov
Michael C. Hughes
114
0
0
28 Jan 2025
Identifying Information from Observations with Uncertainty and Novelty
Identifying Information from Observations with Uncertainty and Novelty
D. Prijatelj
Timothy J. Ireland
Walter J. Scheirer
104
0
0
16 Jan 2025
PAC-Bayes Compression Bounds So Tight That They Can Explain
  Generalization
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization
Sanae Lotfi
Marc Finzi
Sanyam Kapoor
Andres Potapczynski
Micah Goldblum
A. Wilson
BDLMLTAI4CE
64
62
0
24 Nov 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
79
18
0
24 Oct 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCVBDL
75
31
0
17 Jun 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian
  Classification
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDLUD
76
51
0
30 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
87
48
0
22 Feb 2022
User-friendly introduction to PAC-Bayes bounds
User-friendly introduction to PAC-Bayes bounds
Pierre Alquier
FedML
154
205
0
21 Oct 2021
The Neural Testbed: Evaluating Joint Predictions
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
68
22
0
09 Oct 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient
  Noise
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
64
40
0
21 Jul 2021
From Predictions to Decisions: The Importance of Joint Predictive
  Distributions
From Predictions to Decisions: The Importance of Joint Predictive Distributions
Zheng Wen
Ian Osband
Chao Qin
Xiuyuan Lu
M. Ibrahimi
Vikranth Dwaracherla
Mohammad Asghari
Benjamin Van Roy
UQCV
49
22
0
20 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDLUQCV
221
315
0
28 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDLUQCV
75
30
0
14 Jun 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCVBDL
72
387
0
29 Apr 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDLUQCV
124
109
0
11 Apr 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
65
109
0
24 Feb 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard Turner
Mark van der Wilk
Laurence Aitchison
BDLUQCV
106
140
0
12 Feb 2021
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
90
24
0
27 Oct 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
667
41,369
0
22 Oct 2020
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
119
16
0
19 Oct 2020
On the role of data in PAC-Bayes bounds
On the role of data in PAC-Bayes bounds
Gintare Karolina Dziugaite
Kyle Hsu
W. Gharbieh
Gabriel Arpino
Daniel M. Roy
72
78
0
19 Jun 2020
Marginal likelihood computation for model selection and hypothesis
  testing: an extensive review
Marginal likelihood computation for model selection and hypothesis testing: an extensive review
F. Llorente
Luca Martino
D. Delgado
J. Lopez-Santiago
80
85
0
17 May 2020
On the Benefits of Invariance in Neural Networks
On the Benefits of Invariance in Neural Networks
Clare Lyle
Mark van der Wilk
Marta Z. Kwiatkowska
Y. Gal
Benjamin Bloem-Reddy
OODBDL
76
95
0
01 May 2020
Rethinking Parameter Counting in Deep Models: Effective Dimensionality
  Revisited
Rethinking Parameter Counting in Deep Models: Effective Dimensionality Revisited
Wesley J. Maddox
Gregory W. Benton
A. Wilson
116
61
0
04 Mar 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCVBDLOOD
109
653
0
20 Feb 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
467
10,591
0
17 Feb 2020
Fantastic Generalization Measures and Where to Find Them
Fantastic Generalization Measures and Where to Find Them
Yiding Jiang
Behnam Neyshabur
H. Mobahi
Dilip Krishnan
Samy Bengio
AI4CE
139
610
0
04 Dec 2019
On the marginal likelihood and cross-validation
On the marginal likelihood and cross-validation
Edwin Fong
Chris Holmes
UQCV
102
111
0
21 May 2019
Fixup Initialization: Residual Learning Without Normalization
Fixup Initialization: Residual Learning Without Normalization
Hongyi Zhang
Yann N. Dauphin
Tengyu Ma
ODLAI4CE
94
351
0
27 Jan 2019
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
75
86
0
16 Aug 2018
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian
  Compression Approach
Non-Vacuous Generalization Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach
Wenda Zhou
Victor Veitch
Morgane Austern
Ryan P. Adams
Peter Orbanz
75
215
0
16 Apr 2018
Improving Output Uncertainty Estimation and Generalization in Deep
  Learning via Neural Network Gaussian Processes
Improving Output Uncertainty Estimation and Generalization in Deep Learning via Neural Network Gaussian Processes
Tomoharu Iwata
Zoubin Ghahramani
UQCVBDL
50
42
0
19 Jul 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,855
0
14 Jun 2017
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
  Networks with Many More Parameters than Training Data
Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data
Gintare Karolina Dziugaite
Daniel M. Roy
106
819
0
31 Mar 2017
Variational Dropout Sparsifies Deep Neural Networks
Variational Dropout Sparsifies Deep Neural Networks
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
BDL
144
831
0
19 Jan 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
372
7,547
0
02 Dec 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
775
36,861
0
25 Aug 2016
A Strongly Quasiconvex PAC-Bayesian Bound
A Strongly Quasiconvex PAC-Bayesian Bound
Niklas Thiemann
Christian Igel
Olivier Wintenberger
Yevgeny Seldin
54
84
0
19 Aug 2016
PAC-Bayesian Theory Meets Bayesian Inference
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
Francis R. Bach
Alexandre Lacoste
Simon Lacoste-Julien
68
184
0
27 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
Sandwiching the marginal likelihood using bidirectional Monte Carlo
Sandwiching the marginal likelihood using bidirectional Monte Carlo
Roger C. Grosse
Zoubin Ghahramani
Ryan P. Adams
56
62
0
08 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
248
888
0
06 Nov 2015
The Human Kernel
The Human Kernel
A. Wilson
Christoph Dann
Christopher G. Lucas
Eric Xing
GPSyDa
42
68
0
26 Oct 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
226
1,518
0
08 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
104
1,023
0
19 Mar 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
483
43,685
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
Automatic Construction and Natural-Language Description of Nonparametric
  Regression Models
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
78
242
0
18 Feb 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
107
1,235
0
26 Sep 2013
12
Next