Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2201.01666
Cited By
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation
5 January 2022
Vincent Mai
Kaustubh Mani
Liam Paull
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation"
23 / 23 papers shown
Title
Guaranteeing Out-Of-Distribution Detection in Deep RL via Transition Estimation
Mohit Prashant
Arvind Easwaran
Suman Das
Michael Yuhas
OffRL
69
1
0
07 Mar 2025
SrSv: Integrating Sequential Rollouts with Sequential Value Estimation for Multi-agent Reinforcement Learning
Xu Wan
Chao Yang
Cheng Yang
Jie Song
Mingyang Sun
63
0
0
03 Mar 2025
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Seyeon Kim
Joonhun Lee
Namhoon Cho
Sungjun Han
Seungeon Baek
39
0
0
05 Aug 2024
Detecting Unsafe Behavior in Neural Network Imitation Policies for Caregiving Robotics
Andrii Tytarenko
OffRL
44
0
0
29 Jul 2024
Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
Emma Cramer
Bernd Frauenknecht
Ramil Sabirov
Sebastian Trimpe
OffRL
OnRL
46
3
0
28 Jun 2024
Uncertainty-Aware Reward-Free Exploration with General Function Approximation
Junkai Zhang
Weitong Zhang
Dongruo Zhou
Q. Gu
54
3
0
24 Jun 2024
Learning to Play Atari in a World of Tokens
Pranav Agarwal
Sheldon Andrews
Samira Ebrahimi Kahou
OffRL
30
0
0
03 Jun 2024
Grid-Mapping Pseudo-Count Constraint for Offline Reinforcement Learning
Yi Shen
Hanyan Huang
Shan Xie
37
0
0
03 Apr 2024
A unified uncertainty-aware exploration: Combining epistemic and aleatory uncertainty
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
UD
23
2
0
05 Jan 2024
Uncertainty-Aware Decision Transformer for Stochastic Driving Environments
Zenan Li
Fan Nie
Q. Sun
Fang Da
Hang Zhao
OffRL
23
3
0
28 Sep 2023
An Architecture for Deploying Reinforcement Learning in Industrial Environments
Georg Schafer
Reuf Kozlica
S. Wegenkittl
Stefan Huber
OffRL
AI4CE
20
5
0
02 Jun 2023
Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs
Junkai Zhang
Weitong Zhang
Quanquan Gu
33
3
0
17 Mar 2023
MEET: A Monte Carlo Exploration-Exploitation Trade-off for Buffer Sampling
Julius Ott
Lorenzo Servadei
Jose A. Arjona-Medina
E. Rinaldi
Gianfranco Mauro
Daniela Sanchez Lopera
Michael Stephan
Thomas Stadelmayer
Avik Santra
Robert Wille
23
0
0
24 Oct 2022
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin
Mengdi Wang
Yu-Xiang Wang
OffRL
74
12
0
03 Oct 2022
Normality-Guided Distributional Reinforcement Learning for Continuous Control
Ju-Seung Byun
Andrew Perrault
OffRL
16
0
0
28 Aug 2022
Dynamic Memory-based Curiosity: A Bootstrap Approach for Exploration
Zijian Gao
Yiying Li
Kele Xu
Yuanzhao Zhai
Dawei Feng
Bo Ding
Xinjun Mao
Huaimin Wang
32
0
0
24 Aug 2022
A Review of Uncertainty for Deep Reinforcement Learning
Owen Lockwood
Mei Si
11
38
0
18 Aug 2022
Nuclear Norm Maximization Based Curiosity-Driven Learning
Chao Chen
Zijian Gao
Kele Xu
Sen Yang
Yiying Li
Bo Ding
Dawei Feng
Huaimin Wang
137
5
0
21 May 2022
DNS: Determinantal Point Process Based Neural Network Sampler for Ensemble Reinforcement Learning
Hassam Sheikh
Kizza M Nandyose Frisbee
Mariano Phielipp
17
8
0
31 Jan 2022
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review
Rongrong Liu
F. Nageotte
P. Zanne
M. de Mathelin
Birgitta Dresp
42
143
0
08 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1