ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.01666
  4. Cited By
Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation

Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation

5 January 2022
Vincent Mai
Kaustubh Mani
Liam Paull
ArXivPDFHTML

Papers citing "Sample Efficient Deep Reinforcement Learning via Uncertainty Estimation"

23 / 23 papers shown
Title
Guaranteeing Out-Of-Distribution Detection in Deep RL via Transition Estimation
Mohit Prashant
Arvind Easwaran
Suman Das
Michael Yuhas
OffRL
69
1
0
07 Mar 2025
SrSv: Integrating Sequential Rollouts with Sequential Value Estimation for Multi-agent Reinforcement Learning
Xu Wan
Chao Yang
Cheng Yang
Jie Song
Mingyang Sun
63
0
0
03 Mar 2025
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Seyeon Kim
Joonhun Lee
Namhoon Cho
Sungjun Han
Seungeon Baek
39
0
0
05 Aug 2024
Detecting Unsafe Behavior in Neural Network Imitation Policies for
  Caregiving Robotics
Detecting Unsafe Behavior in Neural Network Imitation Policies for Caregiving Robotics
Andrii Tytarenko
OffRL
44
0
0
29 Jul 2024
Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control
  Priors
Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
Emma Cramer
Bernd Frauenknecht
Ramil Sabirov
Sebastian Trimpe
OffRL
OnRL
46
3
0
28 Jun 2024
Uncertainty-Aware Reward-Free Exploration with General Function
  Approximation
Uncertainty-Aware Reward-Free Exploration with General Function Approximation
Junkai Zhang
Weitong Zhang
Dongruo Zhou
Q. Gu
54
3
0
24 Jun 2024
Learning to Play Atari in a World of Tokens
Learning to Play Atari in a World of Tokens
Pranav Agarwal
Sheldon Andrews
Samira Ebrahimi Kahou
OffRL
30
0
0
03 Jun 2024
Grid-Mapping Pseudo-Count Constraint for Offline Reinforcement Learning
Grid-Mapping Pseudo-Count Constraint for Offline Reinforcement Learning
Yi Shen
Hanyan Huang
Shan Xie
37
0
0
03 Apr 2024
A unified uncertainty-aware exploration: Combining epistemic and
  aleatory uncertainty
A unified uncertainty-aware exploration: Combining epistemic and aleatory uncertainty
Parvin Malekzadeh
Ming Hou
Konstantinos N. Plataniotis
UD
23
2
0
05 Jan 2024
Uncertainty-Aware Decision Transformer for Stochastic Driving
  Environments
Uncertainty-Aware Decision Transformer for Stochastic Driving Environments
Zenan Li
Fan Nie
Q. Sun
Fang Da
Hang Zhao
OffRL
23
3
0
28 Sep 2023
An Architecture for Deploying Reinforcement Learning in Industrial
  Environments
An Architecture for Deploying Reinforcement Learning in Industrial Environments
Georg Schafer
Reuf Kozlica
S. Wegenkittl
Stefan Huber
OffRL
AI4CE
20
5
0
02 Jun 2023
Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs
Optimal Horizon-Free Reward-Free Exploration for Linear Mixture MDPs
Junkai Zhang
Weitong Zhang
Quanquan Gu
33
3
0
17 Mar 2023
MEET: A Monte Carlo Exploration-Exploitation Trade-off for Buffer
  Sampling
MEET: A Monte Carlo Exploration-Exploitation Trade-off for Buffer Sampling
Julius Ott
Lorenzo Servadei
Jose A. Arjona-Medina
E. Rinaldi
Gianfranco Mauro
Daniela Sanchez Lopera
Michael Stephan
Thomas Stadelmayer
Avik Santra
Robert Wille
23
0
0
24 Oct 2022
Offline Reinforcement Learning with Differentiable Function
  Approximation is Provably Efficient
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin
Mengdi Wang
Yu-Xiang Wang
OffRL
74
12
0
03 Oct 2022
Normality-Guided Distributional Reinforcement Learning for Continuous
  Control
Normality-Guided Distributional Reinforcement Learning for Continuous Control
Ju-Seung Byun
Andrew Perrault
OffRL
16
0
0
28 Aug 2022
Dynamic Memory-based Curiosity: A Bootstrap Approach for Exploration
Dynamic Memory-based Curiosity: A Bootstrap Approach for Exploration
Zijian Gao
Yiying Li
Kele Xu
Yuanzhao Zhai
Dawei Feng
Bo Ding
Xinjun Mao
Huaimin Wang
32
0
0
24 Aug 2022
A Review of Uncertainty for Deep Reinforcement Learning
A Review of Uncertainty for Deep Reinforcement Learning
Owen Lockwood
Mei Si
11
38
0
18 Aug 2022
Nuclear Norm Maximization Based Curiosity-Driven Learning
Nuclear Norm Maximization Based Curiosity-Driven Learning
Chao Chen
Zijian Gao
Kele Xu
Sen Yang
Yiying Li
Bo Ding
Dawei Feng
Huaimin Wang
137
5
0
21 May 2022
DNS: Determinantal Point Process Based Neural Network Sampler for
  Ensemble Reinforcement Learning
DNS: Determinantal Point Process Based Neural Network Sampler for Ensemble Reinforcement Learning
Hassam Sheikh
Kizza M Nandyose Frisbee
Mariano Phielipp
17
8
0
31 Jan 2022
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
202
81
0
16 Feb 2021
Deep Reinforcement Learning for the Control of Robotic Manipulation: A
  Focussed Mini-Review
Deep Reinforcement Learning for the Control of Robotic Manipulation: A Focussed Mini-Review
Rongrong Liu
F. Nageotte
P. Zanne
M. de Mathelin
Birgitta Dresp
42
143
0
08 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1