Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.01582
Cited By
v1
v2 (latest)
LeapfrogLayers: A Trainable Framework for Effective Topological Sampling
2 December 2021
Sam Foreman
Xiao-Yong Jin
James C. Osborn
Re-assign community
ArXiv (abs)
PDF
HTML
Github (68★)
Papers citing
"LeapfrogLayers: A Trainable Framework for Effective Topological Sampling"
9 / 9 papers shown
Title
Introduction to Normalizing Flows for Lattice Field Theory
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Kyle Cranmer
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
79
58
0
20 Jan 2021
Orbital MCMC
Kirill Neklyudov
Max Welling
64
7
0
15 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
90
15
0
07 Oct 2020
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
89
38
0
30 Jun 2020
You say Normalizing Flows I see Bayesian Networks
Antoine Wehenkel
Gilles Louppe
TPM
BDL
UQCV
48
9
0
01 Jun 2020
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
66
176
0
13 Mar 2020
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
97
125
0
08 Feb 2018
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
79
130
0
25 Nov 2017
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
1