ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15828
  4. Cited By
Resampling Base Distributions of Normalizing Flows

Resampling Base Distributions of Normalizing Flows

29 October 2021
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
    BDL
ArXivPDFHTML

Papers citing "Resampling Base Distributions of Normalizing Flows"

26 / 26 papers shown
Title
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Energy-Based Coarse-Graining in Molecular Dynamics: A Flow-Based Framework Without Data
Maximilian Stupp
P. S. Koutsourelakis
40
0
0
29 Apr 2025
Accelerated Bayesian parameter estimation and model selection for
  gravitational waves with normalizing flows
Accelerated Bayesian parameter estimation and model selection for gravitational waves with normalizing flows
Alicja Polanska
Thibeau Wouters
Peter T. H. Pang
Kaze K. W. Wong
Jason D. McEwen
26
1
0
28 Oct 2024
Controlling for discrete unmeasured confounding in nonlinear causal
  models
Controlling for discrete unmeasured confounding in nonlinear causal models
Patrick Burauel
Frederick Eberhardt
Michel Besserve
CML
23
0
0
10 Aug 2024
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
Diffusive Gibbs Sampling
Diffusive Gibbs Sampling
Wenlin Chen
Mingtian Zhang
Brooks Paige
José Miguel Hernández-Lobato
David Barber
19
7
0
05 Feb 2024
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using
  Adversarial Learning
AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
V. Kanaujia
Mathias S. Scheurer
Vipul Arora
GAN
DRL
19
2
0
29 Jan 2024
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
  Robot Learning
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
26
4
0
11 Nov 2023
Optimal Budgeted Rejection Sampling for Generative Models
Optimal Budgeted Rejection Sampling for Generative Models
Alexandre Verine
Muni Sreenivas Pydi
Benjamin Négrevergne
Y. Chevaleyre
21
3
0
01 Nov 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
16
1
0
26 Sep 2023
Variations and Relaxations of Normalizing Flows
Variations and Relaxations of Normalizing Flows
Keegan Kelly
Lorena Piedras
Sukrit Rao
David Samuel Roth
BDL
27
0
0
08 Sep 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
35
22
0
20 Aug 2023
Learning Distributions via Monte-Carlo Marginalization
Learning Distributions via Monte-Carlo Marginalization
Chenqiu Zhao
Guanfang Dong
Anup Basu
DRL
30
4
0
11 Aug 2023
Density-based Feasibility Learning with Normalizing Flows for
  Introspective Robotic Assembly
Density-based Feasibility Learning with Normalizing Flows for Introspective Robotic Assembly
Jianxiang Feng
Matan Atad
Ismael Rodríguez
M. Durner
Stephan Günnemann
Rudolph Triebel
22
2
0
03 Jul 2023
Improved sampling via learned diffusions
Improved sampling via learned diffusions
Lorenz Richter
Julius Berner
DiffM
29
52
0
03 Jul 2023
Precision-Recall Divergence Optimization for Generative Modeling with
  GANs and Normalizing Flows
Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows
Alexandre Verine
Benjamin Négrevergne
Muni Sreenivas Pydi
Y. Chevaleyre
27
10
0
30 May 2023
Squared Neural Families: A New Class of Tractable Density Models
Squared Neural Families: A New Class of Tractable Density Models
Russell Tsuchida
Cheng Soon Ong
Dino Sejdinovic
TPM
26
11
0
22 May 2023
Normalizing flow sampling with Langevin dynamics in the latent space
Normalizing flow sampling with Langevin dynamics in the latent space
Florentin Coeurdoux
N. Dobigeon
P. Chainais
DRL
15
7
0
20 May 2023
Piecewise Normalizing Flows
Piecewise Normalizing Flows
H. Bevins
Will Handley
Thomas Gessey-Jones
24
0
0
04 May 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
29
6
0
10 Mar 2023
Training Normalizing Flows with the Precision-Recall Divergence
Training Normalizing Flows with the Precision-Recall Divergence
Alexandre Verine
Benjamin Négrevergne
Muni Sreenivas Pydi
Y. Chevaleyre
29
1
0
01 Feb 2023
normflows: A PyTorch Package for Normalizing Flows
normflows: A PyTorch Package for Normalizing Flows
Vincent Stimper
David Liu
Andrew Campbell
V. Berenz
Lukas Ryll
Bernhard Schölkopf
José Miguel Hernández-Lobato
AI4CE
22
55
0
26 Jan 2023
Designing losses for data-free training of normalizing flows on
  Boltzmann distributions
Designing losses for data-free training of normalizing flows on Boltzmann distributions
Loris Felardos
Jérôme Hénin
Guillaume Charpiat
AI4CE
24
8
0
13 Jan 2023
Flow Annealed Importance Sampling Bootstrap
Flow Annealed Importance Sampling Bootstrap
Laurence Illing Midgley
Vincent Stimper
G. Simm
Bernhard Schölkopf
José Miguel Hernández-Lobato
27
77
0
03 Aug 2022
Nonlinear MCMC for Bayesian Machine Learning
Nonlinear MCMC for Bayesian Machine Learning
James Vuckovic
30
2
0
11 Feb 2022
Bootstrap Your Flow
Bootstrap Your Flow
Laurence Illing Midgley
Vincent Stimper
G. Simm
José Miguel Hernández-Lobato
25
5
0
22 Nov 2021
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
279
10,348
0
12 Dec 2018
1