56
2
v1v2 (latest)

Nonlinear MCMC for Bayesian Machine Learning

Abstract

We explore the application of a nonlinear MCMC technique first introduced in [1] to problems in Bayesian machine learning. We provide a convergence guarantee in total variation that uses novel results for long-time convergence and large-particle ("propagation of chaos") convergence. We apply this nonlinear MCMC technique to sampling problems including a Bayesian neural network on CIFAR10.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.