ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10809
  4. Cited By
Hierarchical Skills for Efficient Exploration

Hierarchical Skills for Efficient Exploration

20 October 2021
Jonas Gehring
Gabriel Synnaeve
Andreas Krause
Nicolas Usunier
ArXiv (abs)PDFHTML

Papers citing "Hierarchical Skills for Efficient Exploration"

39 / 39 papers shown
Title
Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration
Max Wilcoxson
Qiyang Li
Kevin Frans
Sergey Levine
SSLOffRLOnRL
168
0
0
23 Oct 2024
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Hierarchical Reinforcement Learning By Discovering Intrinsic Options
Jesse Zhang
Haonan Yu
Wenyuan Xu
BDL
202
82
0
16 Jan 2021
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
  Learning
OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement Learning
Anurag Ajay
Aviral Kumar
Pulkit Agrawal
Sergey Levine
Ofir Nachum
OffRLOnRL
85
159
0
26 Oct 2020
Accelerating Reinforcement Learning with Learned Skill Priors
Accelerating Reinforcement Learning with Learned Skill Priors
Karl Pertsch
Youngwoon Lee
Joseph J. Lim
OffRLOnRL
100
239
0
22 Oct 2020
D2RL: Deep Dense Architectures in Reinforcement Learning
D2RL: Deep Dense Architectures in Reinforcement Learning
Samarth Sinha
Homanga Bharadhwaj
A. Srinivas
Animesh Garg
OffRLAI4CE
95
56
0
19 Oct 2020
Planning in Learned Latent Action Spaces for Generalizable Legged
  Locomotion
Planning in Learned Latent Action Spaces for Generalizable Legged Locomotion
Tianyu Li
Roberto Calandra
Deepak Pathak
Yuandong Tian
Franziska Meier
Akshara Rai
60
30
0
27 Aug 2020
Learning Robot Skills with Temporal Variational Inference
Learning Robot Skills with Temporal Variational Inference
Tanmay Shankar
Abhinav Gupta
DRLBDL
78
75
0
29 Jun 2020
dm_control: Software and Tasks for Continuous Control
dm_control: Software and Tasks for Continuous Control
Yuval Tassa
S. Tunyasuvunakool
Alistair Muldal
Yotam Doron
Piotr Trochim
...
Steven Bohez
J. Merel
Tom Erez
Timothy Lillicrap
N. Heess
LM&Ro
94
416
0
22 Jun 2020
Explore, Discover and Learn: Unsupervised Discovery of State-Covering
  Skills
Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos
Alexander R. Trott
Caiming Xiong
R. Socher
Xavier Giró-i-Nieto
Jordi Torres
OffRL
87
155
0
10 Feb 2020
Discrete and Continuous Action Representation for Practical RL in Video
  Games
Discrete and Continuous Action Representation for Practical RL in Video Games
Olivier Delalleau
Maxim Peter
Eloi Alonso
Adrien Logut
57
53
0
23 Dec 2019
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
64
102
0
23 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
59
53
0
25 Aug 2019
Dynamics-Aware Unsupervised Discovery of Skills
Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma
S. Gu
Sergey Levine
Vikash Kumar
Karol Hausman
101
412
0
02 Jul 2019
Sub-policy Adaptation for Hierarchical Reinforcement Learning
Sub-policy Adaptation for Hierarchical Reinforcement Learning
Alexander C. Li
Carlos Florensa
I. Clavera
Pieter Abbeel
65
74
0
13 Jun 2019
Composing Task-Agnostic Policies with Deep Reinforcement Learning
Composing Task-Agnostic Policies with Deep Reinforcement Learning
A. H. Qureshi
Jacob J. Johnson
Yuzhe Qin
Taylor Henderson
Byron Boots
Michael C. Yip
OffRL
69
30
0
25 May 2019
MCP: Learning Composable Hierarchical Control with Multiplicative
  Compositional Policies
MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies
Xue Bin Peng
Michael Chang
Grace Zhang
Pieter Abbeel
Sergey Levine
74
197
0
23 May 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
143
2,449
0
13 Dec 2018
Neural probabilistic motor primitives for humanoid control
Neural probabilistic motor primitives for humanoid control
J. Merel
Leonard Hasenclever
Alexandre Galashov
Arun Ahuja
Vu Pham
Greg Wayne
Yee Whye Teh
N. Heess
82
160
0
28 Nov 2018
Hierarchical visuomotor control of humanoids
Hierarchical visuomotor control of humanoids
J. Merel
Arun Ahuja
Vu Pham
S. Tunyasuvunakool
Siqi Liu
Dhruva Tirumala
N. Heess
Greg Wayne
97
97
0
23 Nov 2018
Hierarchical Approaches for Reinforcement Learning in Parameterized
  Action Space
Hierarchical Approaches for Reinforcement Learning in Parameterized Action Space
E. Wei
Drew Wicke
S. Luke
BDL
63
35
0
23 Oct 2018
Near-Optimal Representation Learning for Hierarchical Reinforcement
  Learning
Near-Optimal Representation Learning for Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
63
211
0
02 Oct 2018
Variational Option Discovery Algorithms
Variational Option Discovery Algorithms
Joshua Achiam
Harrison Edwards
Dario Amodei
Pieter Abbeel
DRL
72
180
0
26 Jul 2018
Data-Efficient Hierarchical Reinforcement Learning
Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
OffRL
99
811
0
21 May 2018
Learning by Playing - Solving Sparse Reward Tasks from Scratch
Learning by Playing - Solving Sparse Reward Tasks from Scratch
Martin Riedmiller
Roland Hafner
Thomas Lampe
Michael Neunert
Jonas Degrave
T. Wiele
Volodymyr Mnih
N. Heess
Jost Tobias Springenberg
90
448
0
28 Feb 2018
Diversity is All You Need: Learning Skills without a Reward Function
Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
111
1,088
0
16 Feb 2018
Divide-and-Conquer Reinforcement Learning
Divide-and-Conquer Reinforcement Learning
Dibya Ghosh
Avi Singh
Aravind Rajeswaran
Vikash Kumar
Sergey Levine
OffRL
80
127
0
27 Nov 2017
Emergence of Locomotion Behaviours in Rich Environments
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
202
938
0
07 Jul 2017
Learning human behaviors from motion capture by adversarial imitation
Learning human behaviors from motion capture by adversarial imitation
J. Merel
Yuval Tassa
TB Dhruva
S. Srinivasan
Jay Lemmon
Ziyun Wang
Greg Wayne
N. Heess
GAN
67
202
0
07 Jul 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
95
361
0
10 Apr 2017
FeUdal Networks for Hierarchical Reinforcement Learning
FeUdal Networks for Hierarchical Reinforcement Learning
A. Vezhnevets
Simon Osindero
Tom Schaul
N. Heess
Max Jaderberg
David Silver
Koray Kavukcuoglu
FedML
96
907
0
03 Mar 2017
A Laplacian Framework for Option Discovery in Reinforcement Learning
A Laplacian Framework for Option Discovery in Reinforcement Learning
Marlos C. Machado
Marc G. Bellemare
Michael Bowling
89
263
0
02 Mar 2017
Variational Intrinsic Control
Variational Intrinsic Control
Karol Gregor
Danilo Jimenez Rezende
Daan Wierstra
DRLOffRL
88
429
0
22 Nov 2016
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
106
775
0
15 Nov 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
64
1,089
0
16 Sep 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
223
5,085
0
05 Jun 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
84
1,695
0
22 Apr 2016
Reinforcement Learning with Parameterized Actions
Reinforcement Learning with Parameterized Actions
W. Masson
Pravesh Ranchod
George Konidaris
147
208
0
05 Sep 2015
Swing-twist decomposition in Clifford algebra
Swing-twist decomposition in Clifford algebra
P. Dobrowolski
18
39
0
17 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
1