133
0

Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration

Abstract

Unsupervised pretraining has been transformative in many supervised domains. However, applying such ideas to reinforcement learning (RL) presents a unique challenge in that fine-tuning does not involve mimicking task-specific data, but rather exploring and locating the solution through iterative self-improvement. In this work, we study how unlabeled offline trajectory data can be leveraged to learn efficient exploration strategies. While prior data can be used to pretrain a set of low-level skills, or as additional off-policy data for online RL, it has been unclear how to combine these ideas effectively for online exploration. Our method SUPE (Skills from Unlabeled Prior data for Exploration) demonstrates that a careful combination of these ideas compounds their benefits. Our method first extracts low-level skills using a variational autoencoder (VAE), and then pseudo-labels unlabeled trajectories with optimistic rewards and high-level action labels, transforming prior data into high-level, task-relevant examples that encourage novelty-seeking behavior. Finally, SUPE uses these transformed examples as additional off-policy data for online RL to learn a high-level policy that composes pretrained low-level skills to explore efficiently. In our experiments, SUPE consistently outperforms prior strategies across a suite of 42 long-horizon, sparse-reward tasks. Code:this https URL.

View on arXiv
@article{wilcoxson2025_2410.18076,
  title={ Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration },
  author={ Max Wilcoxson and Qiyang Li and Kevin Frans and Sergey Levine },
  journal={arXiv preprint arXiv:2410.18076},
  year={ 2025 }
}
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.