ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.15134
  4. Cited By
Variational Marginal Particle Filters

Variational Marginal Particle Filters

30 September 2021
Jinlin Lai
Justin Domke
Daniel Sheldon
ArXivPDFHTML

Papers citing "Variational Marginal Particle Filters"

40 / 40 papers shown
Title
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
55
21
0
26 Oct 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
28
14
0
01 Mar 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
57
68
0
15 Feb 2021
Optimized Auxiliary Particle Filters: adapting mixture proposals via
  convex optimization
Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization
Nicola Branchini
Victor Elvira
52
18
0
18 Nov 2020
Towards Differentiable Resampling
Towards Differentiable Resampling
Michael Zhu
Kevin Patrick Murphy
Rico Jonschkowski
41
27
0
24 Apr 2020
Discriminative Particle Filter Reinforcement Learning for Complex
  Partial Observations
Discriminative Particle Filter Reinforcement Learning for Complex Partial Observations
Xiao Ma
Peter Karkus
David Hsu
W. Lee
N. Ye
OffRL
36
43
0
23 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
141
1,662
0
05 Dec 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
51
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
122
18
0
24 Jun 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
50
82
0
30 May 2019
Copula-like Variational Inference
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
24
5
0
15 Apr 2019
Elements of Sequential Monte Carlo
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
51
97
0
12 Mar 2019
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
48
196
0
27 Sep 2018
Importance Weighting and Variational Inference
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
39
107
0
27 Aug 2018
Tensor Monte Carlo: particle methods for the GPU era
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
39
13
0
22 Jun 2018
Hamiltonian Variational Auto-Encoder
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDL
DRL
37
96
0
29 May 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic
  Priors
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
48
135
0
28 May 2018
Particle Filter Networks with Application to Visual Localization
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
41
117
0
23 May 2018
Implicit Reparameterization Gradients
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
86
231
0
22 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
112
197
0
13 Feb 2018
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
152
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
198
151
0
29 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
130
210
0
25 May 2017
Variational Boosting: Iteratively Refining Posterior Approximations
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
43
125
0
20 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
221
5,323
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
111
2,523
0
02 Nov 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
75
454
0
30 Sep 2016
Stochastic Backpropagation through Mixture Density Distributions
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
74
44
0
19 Jul 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
183
4,748
0
04 Jan 2016
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
64
184
0
20 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
60
334
0
07 Nov 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
208
1,240
0
01 Sep 2015
Variational Gaussian Copula Inference
Variational Gaussian Copula Inference
Shaobo Han
X. Liao
David B. Dunson
Lawrence Carin
53
56
0
19 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
70
1,250
0
07 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
258
4,143
0
21 May 2015
Nested Sequential Monte Carlo Methods
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
408
84
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
896
149,474
0
22 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
372
16,962
0
20 Dec 2013
Toward Practical N2 Monte Carlo: the Marginal Particle Filter
Toward Practical N2 Monte Carlo: the Marginal Particle Filter
Mike Klaas
Nando de Freitas
Arnaud Doucet
32
139
0
04 Jul 2012
Modeling Temporal Dependencies in High-Dimensional Sequences:
  Application to Polyphonic Music Generation and Transcription
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
Nicolas Boulanger-Lewandowski
Yoshua Bengio
Pascal Vincent
116
700
0
27 Jun 2012
1