Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.15134
Cited By
Variational Marginal Particle Filters
30 September 2021
Jinlin Lai
Justin Domke
Daniel Sheldon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Marginal Particle Filters"
40 / 40 papers shown
Title
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
55
21
0
26 Oct 2021
Learning Proposals for Probabilistic Programs with Inference Combinators
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
28
14
0
01 Mar 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
57
68
0
15 Feb 2021
Optimized Auxiliary Particle Filters: adapting mixture proposals via convex optimization
Nicola Branchini
Victor Elvira
52
18
0
18 Nov 2020
Towards Differentiable Resampling
Michael Zhu
Kevin Patrick Murphy
Rico Jonschkowski
41
27
0
24 Apr 2020
Discriminative Particle Filter Reinforcement Learning for Complex Partial Observations
Xiao Ma
Peter Karkus
David Hsu
W. Lee
N. Ye
OffRL
36
43
0
23 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
141
1,662
0
05 Dec 2019
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
51
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
122
18
0
24 Jun 2019
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
50
82
0
30 May 2019
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
24
5
0
15 Apr 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
51
97
0
12 Mar 2019
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
48
196
0
27 Sep 2018
Importance Weighting and Variational Inference
Justin Domke
Daniel Sheldon
39
107
0
27 Aug 2018
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
39
13
0
22 Jun 2018
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDL
DRL
37
96
0
29 May 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
48
135
0
28 May 2018
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
41
117
0
23 May 2018
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
86
231
0
22 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
112
197
0
13 Feb 2018
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
152
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
198
151
0
29 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
130
210
0
25 May 2017
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
43
125
0
20 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
221
5,323
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
111
2,523
0
02 Nov 2016
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
75
454
0
30 Sep 2016
Stochastic Backpropagation through Mixture Density Distributions
Alex Graves
BDL
74
44
0
19 Jul 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
183
4,748
0
04 Jan 2016
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
64
184
0
20 Nov 2015
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
60
334
0
07 Nov 2015
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
208
1,240
0
01 Sep 2015
Variational Gaussian Copula Inference
Shaobo Han
X. Liao
David B. Dunson
Lawrence Carin
53
56
0
19 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRL
BDL
70
1,250
0
07 Jun 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
258
4,143
0
21 May 2015
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
408
84
0
09 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
896
149,474
0
22 Dec 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
372
16,962
0
20 Dec 2013
Toward Practical N2 Monte Carlo: the Marginal Particle Filter
Mike Klaas
Nando de Freitas
Arnaud Doucet
32
139
0
04 Jul 2012
Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
Nicolas Boulanger-Lewandowski
Yoshua Bengio
Pascal Vincent
116
700
0
27 Jun 2012
1