Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.01952
Cited By
Partition and Code: learning how to compress graphs
5 July 2021
Giorgos Bouritsas
Andreas Loukas
Nikolaos Karalias
M. Bronstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Partition and Code: learning how to compress graphs"
50 / 66 papers shown
Title
Autoregressive Diffusion Models
Emiel Hoogeboom
Alexey A. Gritsenko
Jasmijn Bastings
Ben Poole
Rianne van den Berg
Tim Salimans
DiffM
83
153
0
05 Oct 2021
Compressing Multisets with Large Alphabets using Bits-Back Coding
Daniel de Souza Severo
James Townsend
Ashish Khisti
Alireza Makhzani
Karen Ullrich
54
8
0
15 Jul 2021
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
178
1,121
0
01 Jul 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
62
25
0
22 Feb 2021
Online Graph Dictionary Learning
Cédric Vincent-Cuaz
Titouan Vayer
Rémi Flamary
Marco Corneli
Nicolas Courty
51
46
0
12 Feb 2021
GraphDF: A Discrete Flow Model for Molecular Graph Generation
Youzhi Luo
Keqiang Yan
Shuiwang Ji
DRL
230
199
0
01 Feb 2021
GraphEBM: Molecular Graph Generation with Energy-Based Models
Meng Liu
Keqiang Yan
Bora Oztekin
Shuiwang Ji
70
88
0
31 Jan 2021
Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks
Thomas Bird
F. Kingma
David Barber
SyDa
MQ
AI4CE
108
9
0
26 Oct 2020
Directional Graph Networks
Dominique Beaini
Saro Passaro
Vincent Létourneau
William L. Hamilton
Gabriele Corso
Pietro Lio
88
192
0
06 Oct 2020
TUDataset: A collection of benchmark datasets for learning with graphs
Christopher Morris
Nils M. Kriege
Franka Bause
Kristian Kersting
Petra Mutzel
Marion Neumann
236
821
0
16 Jul 2020
Scalable Deep Generative Modeling for Sparse Graphs
H. Dai
Azade Nazi
Yujia Li
Bo Dai
Dale Schuurmans
BDL
61
78
0
28 Jun 2020
Building powerful and equivariant graph neural networks with structural message-passing
Clément Vignac
Andreas Loukas
P. Frossard
61
121
0
26 Jun 2020
Object-Centric Learning with Slot Attention
Francesco Locatello
Dirk Weissenborn
Thomas Unterthiner
Aravindh Mahendran
G. Heigold
Jakob Uszkoreit
Alexey Dosovitskiy
Thomas Kipf
OCL
222
849
0
26 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
66
60
0
22 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
Stefanos Zafeiriou
M. Bronstein
127
432
0
16 Jun 2020
Learning Better Lossless Compression Using Lossy Compression
Fabian Mentzer
Luc Van Gool
Michael Tschannen
120
71
0
23 Mar 2020
COPT: Coordinated Optimal Transport for Graph Sketching
Yihe Dong
W. Sawin
OT
77
26
0
09 Mar 2020
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
417
940
0
02 Mar 2020
Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu
Yang Song
Jiaming Song
Shengjia Zhao
Aditya Grover
Stefano Ermon
DiffM
69
271
0
02 Mar 2020
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
112
325
0
10 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
168
438
0
26 Jan 2020
HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models
James Townsend
Thomas Bird
Julius Kunze
David Barber
BDL
VLM
123
56
0
20 Dec 2019
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
David Duvenaud
R. Urtasun
R. Zemel
GNN
131
335
0
02 Oct 2019
What graph neural networks cannot learn: depth vs width
Andreas Loukas
GNN
84
299
0
06 Jul 2019
End to end learning and optimization on graphs
Bryan Wilder
Eric Ewing
B. Dilkina
Milind Tambe
GNN
61
107
0
31 May 2019
Solving graph compression via optimal transport
Vikas Garg
Tommi Jaakkola
OT
45
16
0
29 May 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
142
116
0
24 May 2019
Compression with Flows via Local Bits-Back Coding
Jonathan Ho
Evan Lohn
Pieter Abbeel
74
53
0
21 May 2019
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
108
159
0
17 May 2019
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables
F. Kingma
Pieter Abbeel
Jonathan Ho
54
97
0
16 May 2019
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
226
4,341
0
06 Mar 2019
GAP: Generalizable Approximate Graph Partitioning Framework
Azade Nazi
W. Hang
Anna Goldie
Sujith Ravi
Azalia Mirhoseini
63
61
0
02 Mar 2019
A Review of Stochastic Block Models and Extensions for Graph Clustering
Clement Lee
D. Wilkinson
73
201
0
01 Mar 2019
Practical Lossless Compression with Latent Variables using Bits Back Coding
James Townsend
Thomas Bird
David Barber
DRL
66
142
0
15 Jan 2019
Practical Full Resolution Learned Lossless Image Compression
Fabian Mentzer
E. Agustsson
Michael Tschannen
Radu Timofte
Luc Van Gool
61
197
0
30 Nov 2018
DeepZip: Lossless Data Compression using Recurrent Neural Networks
Mohit Goyal
Kedar Tatwawadi
Shubham Chandak
Idoia Ochoa
AI4CE
43
79
0
20 Nov 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
253
1,463
0
09 Nov 2018
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks
Christopher Morris
Martin Ritzert
Matthias Fey
William L. Hamilton
J. E. Lenssen
Gaurav Rattan
Martin Grohe
GNN
192
1,636
0
04 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
219
1,272
0
04 Oct 2018
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
240
7,653
0
01 Oct 2018
Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters
Marton Havasi
Robert Peharz
José Miguel Hernández-Lobato
63
82
0
30 Sep 2018
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
177
926
0
30 May 2018
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
75
456
0
23 May 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
233
3,473
0
09 Mar 2018
Learning Deep Generative Models of Graphs
Yujia Li
Oriol Vinyals
Chris Dyer
Razvan Pascanu
Peter W. Battaglia
GNN
AI4CE
194
662
0
08 Mar 2018
NetGAN: Generating Graphs via Random Walks
Aleksandar Bojchevski
Oleksandr Shchur
Daniel Zügner
Stephan Günnemann
GAN
GNN
177
361
0
02 Mar 2018
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models
Jiaxuan You
Rex Ying
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
BDL
116
849
0
24 Feb 2018
Spectrally approximating large graphs with smaller graphs
Andreas Loukas
P. Vandergheynst
58
105
0
21 Feb 2018
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
99
485
0
19 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
352
1,368
0
12 Feb 2018
1
2
Next