ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01952
  4. Cited By
Partition and Code: learning how to compress graphs

Partition and Code: learning how to compress graphs

5 July 2021
Giorgos Bouritsas
Andreas Loukas
Nikolaos Karalias
M. Bronstein
ArXivPDFHTML

Papers citing "Partition and Code: learning how to compress graphs"

16 / 66 papers shown
Title
Mixed Precision Training
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
157
1,799
0
10 Oct 2017
Bayesian stochastic blockmodeling
Bayesian stochastic blockmodeling
Tiago P. Peixoto
60
202
0
29 May 2017
Bayesian Compression for Deep Learning
Bayesian Compression for Deep Learning
Christos Louizos
Karen Ullrich
Max Welling
UQCV
BDL
166
479
0
24 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
593
7,455
0
04 Apr 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
405
2,464
0
10 Mar 2017
Grammar Variational Autoencoder
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
85
843
0
06 Mar 2017
Variational Graph Auto-Encoders
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
151
3,586
0
21 Nov 2016
Nonparametric Bayesian inference of the microcanonical stochastic block
  model
Nonparametric Bayesian inference of the microcanonical stochastic block model
Tiago P. Peixoto
41
166
0
09 Oct 2016
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
161
2,932
0
07 Oct 2016
Syntactically Informed Text Compression with Recurrent Neural Networks
Syntactically Informed Text Compression with Recurrent Neural Networks
David D. Cox
GNN
40
18
0
08 Aug 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
477
2,570
0
25 Jan 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
  Quantization and Huffman Coding
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
259
8,842
0
01 Oct 2015
Learning both Weights and Connections for Efficient Neural Networks
Learning both Weights and Connections for Efficient Neural Networks
Song Han
Jeff Pool
J. Tran
W. Dally
CVBM
313
6,681
0
08 Jun 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,660
0
09 Mar 2015
Parsimonious module inference in large networks
Parsimonious module inference in large networks
Tiago P. Peixoto
MoE
99
201
0
19 Dec 2012
Subgraph Matching Kernels for Attributed Graphs
Subgraph Matching Kernels for Attributed Graphs
Nils Kriege
Petra Mutzel
58
279
0
27 Jun 2012
Previous
12