Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.15980
Cited By
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
30 June 2021
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence"
31 / 31 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
146
0
0
11 Apr 2025
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
68
1
0
31 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
31
2
0
25 Oct 2024
A theoretical perspective on mode collapse in variational inference
Roman Soletskyi
Marylou Gabrié
Bruno Loureiro
DRL
37
2
0
17 Oct 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
26
0
0
29 Apr 2024
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Forward
χ
2
χ^2
χ
2
Divergence Based Variational Importance Sampling
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
25
2
0
04 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
Stochastic automatic differentiation for Monte Carlo processes
Guilherme Catumba
A. Ramos
B. Zaldívar
25
7
0
28 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
27
15
0
09 Feb 2023
Structured variational approximations with skew normal decomposable graphical models
Roberto Salomone
Xue Yu
David J. Nott
Robert Kohn
24
2
0
07 Feb 2023
Learning to Generate All Feasible Actions
Mirco Theile
Daniele Bernardini
Raphael Trumpp
C. Piazza
Marco Caccamo
Alberto L. Sangiovanni-Vincentelli
29
2
0
26 Jan 2023
Sliced Wasserstein Variational Inference
Mingxuan Yi
Song Liu
17
19
0
26 Jul 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
32
8
0
13 Jun 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
30
46
0
08 Mar 2022
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
30
6
0
03 Feb 2022
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
32
7
0
02 Jan 2022
Variational Bayes for high-dimensional proportional hazards models with applications within gene expression
M. Komodromos
E. Aboagye
Marina Evangelou
Sarah Filippi
Kolyan Ray
14
9
0
19 Dec 2021
Greedification Operators for Policy Optimization: Investigating Forward and Reverse KL Divergences
Alan Chan
Hugo Silva
Sungsu Lim
Tadashi Kozuno
A. R. Mahmood
Martha White
25
29
0
17 Jul 2021
Understanding Failures in Out-of-Distribution Detection with Deep Generative Models
Lily H. Zhang
Mark Goldstein
Rajesh Ranganath
OODD
143
103
0
14 Jul 2021
Flexible Variational Bayes based on a Copula of a Mixture
David Gunawan
Robert Kohn
David J. Nott
8
12
0
28 Jun 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
27
20
0
21 Jun 2021
Mixture weights optimisation for Alpha-Divergence Variational Inference
Kamélia Daudel
Randal Douc
18
8
0
09 Jun 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCV
FedML
36
4
0
29 May 2021
Monotonic Alpha-divergence Minimisation for Variational Inference
Kamélia Daudel
Randal Douc
François Roueff
17
8
0
09 Mar 2021
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Rémi Leluc
Franccois Portier
14
2
0
04 Jun 2020
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
19
3
0
08 Oct 2019
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,267
0
09 Jun 2012
1