ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15980
  4. Cited By
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence

Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence

30 June 2021
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
    BDL
ArXivPDFHTML

Papers citing "Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence"

31 / 31 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
137
0
0
11 Apr 2025
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow
  Perspective
Inclusive KL Minimization: A Wasserstein-Fisher-Rao Gradient Flow Perspective
Jia-Jie Zhu
68
1
0
31 Oct 2024
Learned Reference-based Diffusion Sampling for multi-modal distributions
Learned Reference-based Diffusion Sampling for multi-modal distributions
Maxence Noble
Louis Grenioux
Marylou Gabrié
Alain Durmus
DiffM
31
2
0
25 Oct 2024
A theoretical perspective on mode collapse in variational inference
A theoretical perspective on mode collapse in variational inference
Roman Soletskyi
Marylou Gabrié
Bruno Loureiro
DRL
37
2
0
17 Oct 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Torchtree: flexible phylogenetic model development and inference using
  PyTorch
Torchtree: flexible phylogenetic model development and inference using PyTorch
Mathieu Fourment
Matthew Macaulay
Christiaan J. Swanepoel
Xiang Ji
M. Suchard
Frederick A Matsen IV
BDL
29
0
0
26 Jun 2024
Doubly Adaptive Importance Sampling
Doubly Adaptive Importance Sampling
W. van den Boom
Andrea Cremaschi
Alexandre H. Thiery
26
0
0
29 Apr 2024
Stable Training of Normalizing Flows for High-dimensional Variational
  Inference
Stable Training of Normalizing Flows for High-dimensional Variational Inference
Daniel Andrade
BDL
TPM
43
1
0
26 Feb 2024
Forward $χ^2$ Divergence Based Variational Importance Sampling
Forward χ2χ^2χ2 Divergence Based Variational Importance Sampling
Chengrui Li
Yule Wang
Weihan Li
Anqi Wu
BDL
25
2
0
04 Nov 2023
Bridging the Gap Between Variational Inference and Wasserstein Gradient
  Flows
Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows
Mingxuan Yi
Song Liu
DRL
33
8
0
31 Oct 2023
Stochastic automatic differentiation for Monte Carlo processes
Stochastic automatic differentiation for Monte Carlo processes
Guilherme Catumba
A. Ramos
B. Zaldívar
23
7
0
28 Jul 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
On Sampling with Approximate Transport Maps
On Sampling with Approximate Transport Maps
Louis Grenioux
Alain Durmus
Eric Moulines
Marylou Gabrié
OT
27
15
0
09 Feb 2023
Structured variational approximations with skew normal decomposable
  graphical models
Structured variational approximations with skew normal decomposable graphical models
Roberto Salomone
Xue Yu
David J. Nott
Robert Kohn
24
2
0
07 Feb 2023
Learning to Generate All Feasible Actions
Learning to Generate All Feasible Actions
Mirco Theile
Daniele Bernardini
Raphael Trumpp
C. Piazza
Marco Caccamo
Alberto L. Sangiovanni-Vincentelli
29
2
0
26 Jan 2023
Sliced Wasserstein Variational Inference
Sliced Wasserstein Variational Inference
Mingxuan Yi
Song Liu
17
19
0
26 Jul 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
32
8
0
13 Jun 2022
Variational methods for simulation-based inference
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
30
46
0
08 Mar 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
27
6
0
03 Feb 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
30
7
0
02 Jan 2022
Variational Bayes for high-dimensional proportional hazards models with
  applications within gene expression
Variational Bayes for high-dimensional proportional hazards models with applications within gene expression
M. Komodromos
E. Aboagye
Marina Evangelou
Sarah Filippi
Kolyan Ray
14
9
0
19 Dec 2021
Greedification Operators for Policy Optimization: Investigating Forward
  and Reverse KL Divergences
Greedification Operators for Policy Optimization: Investigating Forward and Reverse KL Divergences
Alan Chan
Hugo Silva
Sungsu Lim
Tadashi Kozuno
A. R. Mahmood
Martha White
25
29
0
17 Jul 2021
Understanding Failures in Out-of-Distribution Detection with Deep
  Generative Models
Understanding Failures in Out-of-Distribution Detection with Deep Generative Models
Lily H. Zhang
Mark Goldstein
Rajesh Ranganath
OODD
143
103
0
14 Jul 2021
Flexible Variational Bayes based on a Copula of a Mixture
Flexible Variational Bayes based on a Copula of a Mixture
David Gunawan
Robert Kohn
David J. Nott
6
12
0
28 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
27
20
0
21 Jun 2021
Mixture weights optimisation for Alpha-Divergence Variational Inference
Mixture weights optimisation for Alpha-Divergence Variational Inference
Kamélia Daudel
Randal Douc
16
8
0
09 Jun 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCV
FedML
36
4
0
29 May 2021
Monotonic Alpha-divergence Minimisation for Variational Inference
Monotonic Alpha-divergence Minimisation for Variational Inference
Kamélia Daudel
Randal Douc
François Roueff
15
8
0
09 Mar 2021
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Asymptotic Analysis of Conditioned Stochastic Gradient Descent
Rémi Leluc
Franccois Portier
12
2
0
04 Jun 2020
Distilling Importance Sampling for Likelihood Free Inference
Distilling Importance Sampling for Likelihood Free Inference
D. Prangle
Cecilia Viscardi
19
3
0
08 Oct 2019
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,267
0
09 Jun 2012
1