ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.06868
  4. Cited By
Priors in Bayesian Deep Learning: A Review

Priors in Bayesian Deep Learning: A Review

14 May 2021
Vincent Fortuin
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Priors in Bayesian Deep Learning: A Review"

50 / 179 papers shown
Title
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
47
209
0
14 May 2020
Prior choice affects ability of Bayesian neural networks to identify
  unknowns
Prior choice affects ability of Bayesian neural networks to identify unknowns
D. Silvestro
Tobias Andermann
UQCV
BDL
37
23
0
11 May 2020
Stable behaviour of infinitely wide deep neural networks
Stable behaviour of infinitely wide deep neural networks
Stefano Favaro
S. Fortini
Stefano Peluchetti
BDL
34
28
0
01 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
73
285
0
24 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
48
649
0
20 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
112
487
0
17 Feb 2020
Holes in Bayesian Statistics
Holes in Bayesian Statistics
Andrew Gelman
Yuling Yao
19
24
0
15 Feb 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
39
127
0
13 Feb 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
69
23
0
10 Feb 2020
Towards Expressive Priors for Bayesian Neural Networks: Poisson Process
  Radial Basis Function Networks
Towards Expressive Priors for Bayesian Neural Networks: Poisson Process Radial Basis Function Networks
Beau Coker
Melanie F. Pradier
Finale Doshi-Velez
BDL
16
5
0
12 Dec 2019
Meta-Learning without Memorization
Meta-Learning without Memorization
Mingzhang Yin
George Tucker
Mingyuan Zhou
Sergey Levine
Chelsea Finn
VLM
43
186
0
09 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
50
227
0
05 Dec 2019
Hierarchical Indian Buffet Neural Networks for Bayesian Continual
  Learning
Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning
Samuel Kessler
Vu Nguyen
S. Zohren
Stephen J. Roberts
BDL
33
23
0
04 Dec 2019
Richer priors for infinitely wide multi-layer perceptrons
Richer priors for infinitely wide multi-layer perceptrons
Russell Tsuchida
Fred Roosta
M. Gallagher
26
10
0
29 Nov 2019
Function-Space Distributions over Kernels
Function-Space Distributions over Kernels
Gregory W. Benton
Wesley J. Maddox
Jayson Salkey
J. Albinati
A. Wilson
BDL
GP
16
26
0
29 Oct 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural Processes
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
53
164
0
29 Oct 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
78
197
0
28 Oct 2019
Mixture-of-Experts Variational Autoencoder for Clustering and Generating
  from Similarity-Based Representations on Single Cell Data
Mixture-of-Experts Variational Autoencoder for Clustering and Generating from Similarity-Based Representations on Single Cell Data
Andreas Kopf
Vincent Fortuin
Vignesh Ram Somnath
Manfred Claassen
DRL
30
12
0
17 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
30
6
0
07 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
47
162
0
03 Oct 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
53
150
0
13 Sep 2019
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
46
247
0
09 Jul 2019
Weight-space symmetry in deep networks gives rise to permutation
  saddles, connected by equal-loss valleys across the loss landscape
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
72
55
0
05 Jul 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale
  Bayesian Deep Learning
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
38
56
0
01 Jul 2019
Quality of Uncertainty Quantification for Bayesian Neural Network
  Inference
Quality of Uncertainty Quantification for Bayesian Neural Network Inference
Jiayu Yao
Weiwei Pan
S. Ghosh
Finale Doshi-Velez
UQCV
BDL
118
113
0
24 Jun 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
54
77
0
19 Jun 2019
Large Scale Structure of Neural Network Loss Landscapes
Large Scale Structure of Neural Network Loss Landscapes
Stanislav Fort
Stanislaw Jastrzebski
41
83
0
11 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
137
1,677
0
06 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
72
243
0
06 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
60
124
0
05 Jun 2019
Topological Autoencoders
Topological Autoencoders
Michael Moor
Max Horn
Bastian Rieck
Karsten Borgwardt
37
149
0
03 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
105
1,788
0
02 Jun 2019
A Topology Layer for Machine Learning
A Topology Layer for Machine Learning
Rickard Brüel-Gabrielsson
Bradley J. Nelson
Anjan Dwaraknath
Primoz Skraba
Leonidas Guibas
Gunnar Carlsson
AI4CE
57
132
0
29 May 2019
On the marginal likelihood and cross-validation
On the marginal likelihood and cross-validation
Edwin Fong
Chris Holmes
UQCV
90
110
0
21 May 2019
Output-Constrained Bayesian Neural Networks
Output-Constrained Bayesian Neural Networks
Wanqian Yang
Lars Lorch
Moritz Graule
Srivatsan Srinivasan
Anirudh Suresh
Jiayu Yao
Melanie F. Pradier
Finale Doshi-Velez
UQCV
BDL
23
12
0
15 May 2019
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and
  Periodic Functions
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
Tim Pearce
Russell Tsuchida
Mohamed H. Zaki
Alexandra Brintrup
A. Neely
BDL
32
48
0
15 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
57
43
0
14 May 2019
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in
  Intensive Care
Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care
H. Overweg
Anna-Lena Popkes
A. Ercole
Yingzhen Li
José Miguel Hernández-Lobato
Yordan Zaykov
Cheng Zhang
61
24
0
07 May 2019
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
Combining Model and Parameter Uncertainty in Bayesian Neural Networks
A. Hubin
G. Storvik
UQCV
BDL
37
11
0
18 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
47
236
0
14 Mar 2019
Function Space Particle Optimization for Bayesian Neural Networks
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Tongzheng Ren
Jun Zhu
Bo Zhang
BDL
42
65
0
26 Feb 2019
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
  Descent
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
146
1,089
0
18 Feb 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
118
32
0
15 Feb 2019
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian
  Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Scaling Limits of Wide Neural Networks with Weight Sharing: Gaussian Process Behavior, Gradient Independence, and Neural Tangent Kernel Derivation
Greg Yang
92
286
0
13 Feb 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
64
275
0
11 Feb 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
80
20
0
07 Feb 2019
Meta-Learning Mean Functions for Gaussian Processes
Meta-Learning Mean Functions for Gaussian Processes
Vincent Fortuin
Heiko Strathmann
Gunnar Rätsch
BDL
FedML
MLT
51
29
0
23 Jan 2019
Applying SVGD to Bayesian Neural Networks for Cyclical Time-Series
  Prediction and Inference
Applying SVGD to Bayesian Neural Networks for Cyclical Time-Series Prediction and Inference
Xinyu Hu
Paul A. Szerlip
Theofanis Karaletsos
Rohit Singh
BDL
AI4TS
21
5
0
17 Jan 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
77
436
0
17 Jan 2019
On Lazy Training in Differentiable Programming
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
87
823
0
19 Dec 2018
Previous
1234
Next