Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.06868
Cited By
Priors in Bayesian Deep Learning: A Review
14 May 2021
Vincent Fortuin
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Priors in Bayesian Deep Learning: A Review"
29 / 179 papers shown
Title
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
47
267
0
01 Nov 2016
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
39
144
0
14 Oct 2016
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
109
1,603
0
27 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
61
1,082
0
16 Aug 2016
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
83
1,805
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
185
3,681
0
26 May 2016
Stick-Breaking Variational Autoencoders
Marco Cote
Padhraic Smyth
BDL
DRL
102
164
0
20 May 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
55
256
0
15 Mar 2016
Deep Gaussian Processes for Regression using Approximate Expectation Propagation
T. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDL
72
235
0
12 Feb 2016
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
77
909
0
06 Feb 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
181
4,748
0
04 Jan 2016
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
40
131
0
19 Nov 2015
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
189
882
0
06 Nov 2015
Steps Toward Deep Kernel Methods from Infinite Neural Networks
Tamir Hazan
Tommi Jaakkola
39
83
0
20 Aug 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
258
4,143
0
21 May 2015
Scalable Bayesian Optimization Using Deep Neural Networks
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
N. Satish
N. Sundaram
Md. Mostofa Ali Patwary
P. Prabhat
Ryan P. Adams
BDL
UQCV
70
1,041
0
19 Feb 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCV
BDL
64
940
0
18 Feb 2015
Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It
Peter Grünwald
T. V. Ommen
69
265
0
11 Dec 2014
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
144
272
0
24 Feb 2014
Avoiding pathologies in very deep networks
David Duvenaud
Oren Rippel
Ryan P. Adams
Zoubin Ghahramani
ODL
BDL
79
158
0
24 Feb 2014
Student-t Processes as Alternatives to Gaussian Processes
Amar Shah
A. Wilson
Zoubin Ghahramani
GP
68
202
0
18 Feb 2014
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
54
241
0
18 Feb 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
367
16,962
0
20 Dec 2013
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
80
1,226
0
26 Sep 2013
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
David Duvenaud
J. Lloyd
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
53
509
0
20 Feb 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
53
604
0
18 Feb 2013
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
75
1,178
0
02 Nov 2012
A Model of Inductive Bias Learning
Jonathan Baxter
95
1,210
0
01 Jun 2011
Copula Processes
A. Wilson
Zoubin Ghahramani
126
113
0
07 Jun 2010
Previous
1
2
3
4