Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.03902
Cited By
Learning Gradient Fields for Molecular Conformation Generation
9 May 2021
Chence Shi
Shitong Luo
Minkai Xu
Jian Tang
DiffM
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Gradient Fields for Molecular Conformation Generation"
35 / 35 papers shown
Title
PolyConf: Unlocking Polymer Conformation Generation through Hierarchical Generative Models
Fanmeng Wang
Wentao Guo
Qi Ou
Hongshuai Wang
Haitao Lin
Hongteng Xu
Zhifeng Gao
AI4CE
61
2
0
11 Apr 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
84
0
0
28 Jan 2025
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
86
23
0
01 Mar 2024
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
Weitao Du
Zhiming Ma
Hongyu Guo
Jian Tang
51
31
0
28 May 2023
HamNet: Conformation-Guided Molecular Representation with Hamiltonian Neural Networks
Ziyao Li
Shuwen Yang
Guojie Song
Lingsheng Cai
36
21
0
08 May 2021
MARS: Markov Molecular Sampling for Multi-objective Drug Discovery
Yutong Xie
Chence Shi
Hao Zhou
Yuwei Yang
Weinan Zhang
Yong Yu
Lei Li
61
142
0
18 Mar 2021
Learning Neural Generative Dynamics for Molecular Conformation Generation
Minkai Xu
Shitong Luo
Yoshua Bengio
Jian-wei Peng
Jian Tang
AI4CE
59
117
0
20 Feb 2021
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras
Emiel Hoogeboom
Max Welling
57
997
0
19 Feb 2021
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
44
64
0
25 Nov 2020
Autoregressive Score Matching
Chenlin Meng
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
DiffM
218
13
0
24 Oct 2020
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
46
78
0
19 Aug 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
71
683
0
18 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
127
1,135
0
16 Jun 2020
TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search
T. Gogineni
Ziping Xu
E. Punzalan
Runxuan Jiang
Joshua A Kammeraad
Ambuj Tewari
Paul M. Zimmerman
AI4CE
39
32
0
12 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
53
210
0
09 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
65
265
0
03 Jun 2020
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
98
861
0
06 Mar 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
148
434
0
26 Jan 2020
A Generative Model for Molecular Distance Geometry
G. Simm
José Miguel Hernández-Lobato
GAN
59
107
0
25 Sep 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
154
3,803
0
12 Jul 2019
Strategies for Pre-training Graph Neural Networks
Weihua Hu
Bowen Liu
Joseph Gomes
Marinka Zitnik
Percy Liang
Vijay S. Pande
J. Leskovec
SSL
AI4CE
72
1,377
0
29 May 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
72
409
0
17 May 2019
Molecular geometry prediction using a deep generative graph neural network
Elman Mansimov
Omar Mahmood
Seokho Kang
Kyunghyun Cho
73
186
0
31 Mar 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
139
7,554
0
01 Oct 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
62
501
0
06 Jul 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
257
895
0
07 Jun 2018
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas
Tess E. Smidt
S. Kearnes
Lusann Yang
Li Li
Kai Kohlhoff
Patrick F. Riley
3DPC
73
959
0
22 Feb 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
286
1,358
0
12 Feb 2018
Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
44
1,130
0
30 Jul 2017
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
110
1,063
0
26 Jun 2017
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
252
7,388
0
04 Apr 2017
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
424
28,795
0
09 Sep 2016
Molecular Graph Convolutions: Moving Beyond Fingerprints
S. Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick F. Riley
GNN
103
1,443
0
02 Mar 2016
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud
D. Maclaurin
J. Aguilera-Iparraguirre
Rafael Gómez-Bombarelli
Timothy D. Hirzel
Alán Aspuru-Guzik
Ryan P. Adams
GNN
145
3,337
0
30 Sep 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
678
149,474
0
22 Dec 2014
1