ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.04922
  4. Cited By
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models

Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models

8 March 2021
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
    VLM
    TPM
ArXivPDFHTML

Papers citing "Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models"

50 / 223 papers shown
Title
Differentiable Augmentation for Data-Efficient GAN Training
Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao
Zhijian Liu
Ji Lin
Jun-Yan Zhu
Song Han
74
604
0
18 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
98
2,516
0
17 Jun 2020
Training Generative Adversarial Networks with Limited Data
Training Generative Adversarial Networks with Limited Data
Tero Karras
M. Aittala
Janne Hellsten
S. Laine
J. Lehtinen
Timo Aila
GAN
120
1,873
0
11 Jun 2020
Linformer: Self-Attention with Linear Complexity
Linformer: Self-Attention with Linear Complexity
Sinong Wang
Belinda Z. Li
Madian Khabsa
Han Fang
Hao Ma
170
1,678
0
08 Jun 2020
The Lipschitz Constant of Self-Attention
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
43
143
0
08 Jun 2020
Image Augmentations for GAN Training
Image Augmentations for GAN Training
Zhengli Zhao
Zizhao Zhang
Ting-Li Chen
Sameer Singh
Han Zhang
51
137
0
04 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
55
28
0
02 Jun 2020
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal
  Transport
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
OT
35
159
0
29 May 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
500
41,106
0
28 May 2020
Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
  by Exploring Energy of the Discriminator
Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling by Exploring Energy of the Discriminator
Yuxuan Song
Qiwei Ye
Minkai Xu
Tie-Yan Liu
45
8
0
05 Apr 2020
SUMO: Unbiased Estimation of Log Marginal Probability for Latent
  Variable Models
SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models
Yucen Luo
Alex Beatson
Mohammad Norouzi
Jun Zhu
David Duvenaud
Ryan P. Adams
Ricky T. Q. Chen
88
29
0
01 Apr 2020
Your GAN is Secretly an Energy-based Model and You Should use
  Discriminator Driven Latent Sampling
Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling
Tong Che
Ruixiang Zhang
Jascha Narain Sohl-Dickstein
Hugo Larochelle
Liam Paull
Yuan Cao
Yoshua Bengio
DiffM
DRL
51
113
0
12 Mar 2020
Generalized Energy Based Models
Generalized Energy Based Models
Michael Arbel
Liang Zhou
Arthur Gretton
DRL
74
79
0
10 Mar 2020
Training Deep Energy-Based Models with f-Divergence Minimization
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
216
42
0
06 Mar 2020
VFlow: More Expressive Generative Flows with Variational Data
  Augmentation
VFlow: More Expressive Generative Flows with Variational Data Augmentation
Jianfei Chen
Cheng Lu
Biqi Chenli
Jun Zhu
Tian Tian
DRL
40
63
0
22 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
64
88
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
96
181
0
16 Feb 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
141
121
0
10 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic
  regularization
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
38
298
0
07 Feb 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and
  Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
83
829
0
20 Jan 2020
Towards GAN Benchmarks Which Require Generalization
Towards GAN Benchmarks Which Require Generalization
Ishaan Gulrajani
Colin Raffel
Luke Metz
51
57
0
10 Jan 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
74
536
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
139
1,662
0
05 Dec 2019
Dream to Control: Learning Behaviors by Latent Imagination
Dream to Control: Learning Behaviors by Latent Imagination
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
VLM
97
1,333
0
03 Dec 2019
Analyzing and Improving the Image Quality of StyleGAN
Analyzing and Improving the Image Quality of StyleGAN
Tero Karras
S. Laine
M. Aittala
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
256
5,769
0
03 Dec 2019
Flow Contrastive Estimation of Energy-Based Models
Flow Contrastive Estimation of Energy-Based Models
Ruiqi Gao
Erik Nijkamp
Diederik P. Kingma
Zhen Xu
Andrew M. Dai
Ying Nian Wu
GAN
51
113
0
02 Dec 2019
Self-supervised GAN: Analysis and Improvement with Multi-class Minimax
  Game
Self-supervised GAN: Analysis and Improvement with Multi-class Minimax Game
Ngoc-Trung Tran
Viet-Hung Tran
Ngoc-Bao Nguyen
Linxiao Yang
Ngai-Man Cheung
SSL
GAN
35
60
0
16 Nov 2019
Gradient-based Adaptive Markov Chain Monte Carlo
Gradient-based Adaptive Markov Chain Monte Carlo
Michalis K. Titsias
P. Dellaportas
BDL
70
22
0
04 Nov 2019
Small-GAN: Speeding Up GAN Training Using Core-sets
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
54
73
0
29 Oct 2019
Learning Energy-Based Models in High-Dimensional Spaces with Multi-scale
  Denoising Score Matching
Learning Energy-Based Models in High-Dimensional Spaces with Multi-scale Denoising Score Matching
Zengyi Li
Yubei Chen
Friedrich T. Sommer
DiffM
30
28
0
17 Oct 2019
MelGAN: Generative Adversarial Networks for Conditional Waveform
  Synthesis
MelGAN: Generative Adversarial Networks for Conditional Waveform Synthesis
Kundan Kumar
Rithesh Kumar
T. Boissière
L. Gestin
Wei Zhen Teoh
Jose M. R. Sotelo
A. D. Brébisson
Yoshua Bengio
Aaron Courville
GAN
79
945
0
08 Oct 2019
Potential Flow Generator with $L_2$ Optimal Transport Regularity for
  Generative Models
Potential Flow Generator with L2L_2L2​ Optimal Transport Regularity for Generative Models
Liu Yang
George Karniadakis
OT
17
43
0
29 Aug 2019
Spectral Regularization for Combating Mode Collapse in GANs
Spectral Regularization for Combating Mode Collapse in GANs
Kanglin Liu
Wenming Tang
Fei Zhou
Guoping Qiu
GAN
DRL
37
82
0
29 Aug 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
66
146
0
14 Aug 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
53
11
0
24 Jul 2019
MintNet: Building Invertible Neural Networks with Masked Convolutions
MintNet: Building Invertible Neural Networks with Masked Convolutions
Yang Song
Chenlin Meng
Stefano Ermon
33
68
0
18 Jul 2019
The continuous Bernoulli: fixing a pervasive error in variational
  autoencoders
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
Gabriel Loaiza-Ganem
John P. Cunningham
DRL
48
82
0
16 Jul 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
178
3,803
0
12 Jul 2019
Generative Adversarial Networks are Special Cases of Artificial
  Curiosity (1990) and also Closely Related to Predictability Minimization
  (1991)
Generative Adversarial Networks are Special Cases of Artificial Curiosity (1990) and also Closely Related to Predictability Minimization (1991)
J. Schmidhuber
GAN
DRL
70
57
0
11 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
117
761
0
10 Jun 2019
The Implicit Metropolis-Hastings Algorithm
The Implicit Metropolis-Hastings Algorithm
Kirill Neklyudov
Evgenii Egorov
Dmitry Vetrov
27
5
0
09 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
56
375
0
06 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
60
57
0
05 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
105
1,788
0
02 Jun 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
102
116
0
24 May 2019
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
  the Diffusion Limit
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
101
207
0
23 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
53
158
0
17 May 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
72
409
0
17 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
44
142
0
07 May 2019
Generating Long Sequences with Sparse Transformers
Generating Long Sequences with Sparse Transformers
R. Child
Scott Gray
Alec Radford
Ilya Sutskever
76
1,880
0
23 Apr 2019
Previous
12345
Next