Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.04922
Cited By
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
8 March 2021
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models"
50 / 223 papers shown
Title
Diffusion Probabilistic Generative Models for Accelerated, in-NICU Permanent Magnet Neonatal MRI
Yamin Arefeen
Brett Levac
Bhairav Patel
Chang Ho
Jonathan I. Tamir
DiffM
MedIm
31
0
0
21 May 2025
Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning
Chuangtao Chen
Qinglin Zhao
Mengchu Zhou
Zhimin He
Haozhen Situ
DiffM
129
0
0
08 May 2025
Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
Tien Comlekoglu
J. Q. Toledo-Marín
Tina Comlekoglu
Douglas W. DeSimone
Shayn M. Peirce
Geoffrey C. Fox
J. Glazier
99
1
0
01 May 2025
Deep Generative Model-Based Generation of Synthetic Individual-Specific Brain MRI Segmentations
Ruijie Wang
Luca Rossetto
Susan Mérillat
Christina Röcke
Mike Martin
Abraham Bernstein
DiffM
MedIm
115
0
0
15 Apr 2025
Double Blind Imaging with Generative Modeling
Brett Levac
A. Jalal
Kannan Ramchandran
Jonathan I. Tamir
DiffM
MedIm
106
0
0
27 Mar 2025
Beyond Batch Learning: Global Awareness Enhanced Domain Adaptation
Lingkun Luo
Shiqiang Hu
Liming Chen
111
0
0
10 Feb 2025
EDSep: An Effective Diffusion-Based Method for Speech Source Separation
Jinwei Dong
Xinsheng Wang
Qirong Mao
96
1
0
28 Jan 2025
Synthesizing Forestry Images Conditioned on Plant Phenotype Using a Generative Adversarial Network
Debasmita Pal
Arun Ross
GAN
110
1
0
17 Jan 2025
Expert-elicitation method for non-parametric joint priors using normalizing flows
F. Bockting
Stefan T. Radev
Paul-Christian Bürkner
BDL
135
1
0
24 Nov 2024
A Deep Generative Learning Approach for Two-stage Adaptive Robust Optimization
Aron Brenner
Rahman Khorramfar
Jennifer Sun
Saurabh Amin
107
0
0
05 Sep 2024
A Pattern Language for Machine Learning Tasks
Benjamin Rodatz
Ian Fan
Tuomas Laakkonen
Neil John Ortega
Thomas Hoffman
Vincent Wang-Ma'scianica
71
3
0
02 Jul 2024
Discrete Distribution Networks
Lei Yang
59
1
0
29 Dec 2023
Conditional Generative Modeling for High-dimensional Marked Temporal Point Processes
Zheng Dong
Zekai Fan
Shixiang Zhu
DiffM
53
4
0
21 May 2023
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
138
30,021
0
01 Mar 2022
Alias-Free Generative Adversarial Networks
Tero Karras
M. Aittala
S. Laine
Erik Härkönen
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
148
1,582
0
23 Jun 2021
Score-based Generative Modeling in Latent Space
Arash Vahdat
Karsten Kreis
Jan Kautz
DiffM
32
667
0
10 Jun 2021
Learning to Efficiently Sample from Diffusion Probabilistic Models
Daniel Watson
Jonathan Ho
Mohammad Norouzi
William Chan
DiffM
64
135
0
07 Jun 2021
Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings
Kartik Goyal
Chris Dyer
Taylor Berg-Kirkpatrick
112
51
0
04 Jun 2021
Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau
Ke Li
Remi Piche-Taillefer
Tal Kachman
Ioannis Mitliagkas
DiffM
55
218
0
28 May 2021
UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
Hiroshi Sasaki
Chris G. Willcocks
T. Breckon
DiffM
43
163
0
12 Apr 2021
Improved Autoregressive Modeling with Distribution Smoothing
Chenlin Meng
Jiaming Song
Yang Song
Shengjia Zhao
Stefano Ermon
DiffM
37
23
0
28 Mar 2021
Generative Minimization Networks: Training GANs Without Competition
Paulina Grnarova
Yannic Kilcher
Kfir Y. Levy
Aurelien Lucchi
Thomas Hofmann
GAN
26
6
0
23 Mar 2021
Implicit Normalizing Flows
Cheng Lu
Jianfei Chen
Chongxuan Li
Qiuhao Wang
Jun Zhu
AI4CE
39
34
0
17 Mar 2021
Anycost GANs for Interactive Image Synthesis and Editing
Ji Lin
Richard Y. Zhang
F. Ganz
Song Han
Jun-Yan Zhu
70
85
0
04 Mar 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
319
4,873
0
24 Feb 2021
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
173
3,599
0
18 Feb 2021
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions
Emiel Hoogeboom
Didrik Nielsen
P. Jaini
Patrick Forré
Max Welling
DiffM
263
414
0
10 Feb 2021
Generative Models as Distributions of Functions
Emilien Dupont
Yee Whye Teh
Arnaud Doucet
39
103
0
09 Feb 2021
Oops I Took A Gradient: Scalable Sampling for Discrete Distributions
Will Grathwohl
Kevin Swersky
Milad Hashemi
David Duvenaud
Chris J. Maddison
BDL
43
96
0
08 Feb 2021
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis
Bingchen Liu
Yizhe Zhu
Kunpeng Song
Ahmed Elgammal
203
238
0
12 Jan 2021
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
47
252
0
09 Jan 2021
Taming Transformers for High-Resolution Image Synthesis
Patrick Esser
Robin Rombach
Bjorn Ommer
ViT
93
2,890
0
17 Dec 2020
Learning Energy-Based Models by Diffusion Recovery Likelihood
Ruiqi Gao
Yang Song
Ben Poole
Ying Nian Wu
Diederik P. Kingma
DiffM
49
126
0
15 Dec 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
262
6,293
0
26 Nov 2020
Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images
R. Child
BDL
VLM
158
343
0
20 Nov 2020
Autoregressive Score Matching
Chenlin Meng
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
DiffM
218
13
0
24 Oct 2020
No MCMC for me: Amortized sampling for fast and stable training of energy-based models
Will Grathwohl
Jacob Kelly
Milad Hashemi
Mohammad Norouzi
Kevin Swersky
David Duvenaud
46
71
0
08 Oct 2020
A Neural Network MCMC sampler that maximizes Proposal Entropy
Zengyi Li
Yubei Chen
Friedrich T. Sommer
60
15
0
07 Oct 2020
Denoising Diffusion Implicit Models
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
140
7,166
0
06 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
35
124
0
01 Oct 2020
Rethinking Attention with Performers
K. Choromanski
Valerii Likhosherstov
David Dohan
Xingyou Song
Andreea Gane
...
Afroz Mohiuddin
Lukasz Kaiser
David Belanger
Lucy J. Colwell
Adrian Weller
133
1,548
0
30 Sep 2020
Improving the Speed and Quality of GAN by Adversarial Training
Jiachen Zhong
Xuanqing Liu
Cho-Jui Hsieh
GAN
27
16
0
07 Aug 2020
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
56
900
0
08 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
44
53
0
07 Jul 2020
Gradient Origin Networks
Sam Bond-Taylor
Chris G. Willcocks
BDL
DRL
49
18
0
06 Jul 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPM
BDL
DRL
32
92
0
06 Jul 2020
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
Angelos Katharopoulos
Apoorv Vyas
Nikolaos Pappas
Franccois Fleuret
105
1,716
0
29 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
43
60
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
284
17,550
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
84
2,384
0
18 Jun 2020
1
2
3
4
5
Next