Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2103.00668
Cited By
v1
v2
v3 (latest)
Learning Proposals for Probabilistic Programs with Inference Combinators
1 March 2021
Sam Stites
Heiko Zimmermann
Hao Wu
Eli Sennesh
Jan-Willem van de Meent
NAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Proposals for Probabilistic Programs with Inference Combinators"
40 / 40 papers shown
Title
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
70
21
0
21 Jun 2021
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
500
10,591
0
17 Feb 2020
Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu
Heiko Zimmermann
Eli Sennesh
T. Le
Jan-Willem van de Meent
34
7
0
04 Nov 2019
Functional Tensors for Probabilistic Programming
F. Obermeyer
Eli Bingham
M. Jankowiak
Du Phan
Jonathan P. Chen
42
18
0
23 Oct 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
69
58
0
08 Jul 2019
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
71
48
0
28 Jun 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
73
97
0
12 Mar 2019
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCL
SSL
106
509
0
01 Mar 2019
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
61
56
0
05 Nov 2018
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDL
GP
158
1,057
0
18 Oct 2018
Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives
George Tucker
Dieterich Lawson
S. Gu
Chris J. Maddison
BDL
69
110
0
09 Oct 2018
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
50
63
0
02 Oct 2018
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
73
200
0
27 Sep 2018
Improving Explorability in Variational Inference with Annealed Variational Objectives
Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
DRL
44
47
0
06 Sep 2018
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDL
DRL
57
95
0
29 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
172
198
0
13 Feb 2018
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Philip Torr
DRL
CoGe
133
363
0
01 Jun 2017
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
263
214
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
309
152
0
29 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
238
210
0
25 May 2017
Grammar Variational Autoencoder
Matt J. Kusner
Brooks Paige
José Miguel Hernández-Lobato
BDL
DRL
85
844
0
06 Mar 2017
Approximate Inference with Amortised MCMC
Yingzhen Li
Richard Turner
Qiang Liu
BDL
66
62
0
27 Feb 2017
A Convenient Category for Higher-Order Probability Theory
C. Heunen
Ohad Kammar
S. Staton
Hongseok Yang
58
161
0
10 Jan 2017
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
78
300
0
31 Oct 2016
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
103
82
0
18 Oct 2016
Composing inference algorithms as program transformations
R. Zinkov
Chung-chieh Shan
TPM
42
30
0
06 Mar 2016
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
276
1,246
0
01 Sep 2015
Black-Box Policy Search with Probabilistic Programs
Jan-Willem van de Meent
Brooks Paige
David Tolpin
Frank Wood
48
24
0
16 Jul 2015
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
61
347
0
03 Jul 2015
Gradient Estimation Using Stochastic Computation Graphs
John Schulman
N. Heess
T. Weber
Pieter Abbeel
OffRL
148
395
0
17 Jun 2015
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
433
84
0
09 Feb 2015
Reweighted Wake-Sleep
J. Bornschein
Yoshua Bengio
BDL
109
183
0
11 Jun 2014
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
71
256
0
01 Apr 2014
A Compilation Target for Probabilistic Programming Languages
Brooks Paige
Frank Wood
75
80
0
03 Mar 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
150
1,167
0
31 Dec 2013
Measure Transformer Semantics for Bayesian Machine Learning
J. Borgström
Andrew D. Gordon
Michael Greenberg
J. Margetson
Jurgen Van Gael
79
104
0
03 Aug 2013
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Lawrence M. Murray
88
113
0
14 Jun 2013
Parallel resampling in the particle filter
Lawrence M. Murray
Anthony Lee
Pierre E. Jacob
70
139
0
17 Jan 2013
Automated Variational Inference in Probabilistic Programming
David Wingate
T. Weber
BDL
TPM
91
139
0
07 Jan 2013
Church: a language for generative models
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
107
819
0
13 Jun 2012
1