ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13156
  4. Cited By
Physics-Integrated Variational Autoencoders for Robust and Interpretable
  Generative Modeling

Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling

25 February 2021
Naoya Takeishi
Alexandros Kalousis
    DRL
    AI4CE
ArXivPDFHTML

Papers citing "Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling"

37 / 37 papers shown
Title
KAE: Kolmogorov-Arnold Auto-Encoder for Representation Learning
Fangchen Yu
Ruilizhen Hu
Yidong Lin
Yuqi Ma
Zhenghao Huang
Wenye Li
34
0
0
03 Jan 2025
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
J. C. V. Gemert
Daan Brinks
Nergis Tömen
38
0
0
02 Oct 2024
Generating Physical Dynamics under Priors
Generating Physical Dynamics under Priors
Zihan Zhou
Xiaoxue Wang
Tianshu Yu
DiffM
AI4CE
66
0
0
01 Sep 2024
Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse
  Problems
Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems
Sojin Lee
Dogyun Park
Inho Kong
Hyunwoo J. Kim
DiffM
40
2
0
23 Jul 2024
Towards detailed and interpretable hybrid modeling of continental-scale
  bird migration
Towards detailed and interpretable hybrid modeling of continental-scale bird migration
Fiona Lippert
Bart Kranstauber
Patrick Forré
E. E. V. Loon
39
0
0
14 Jul 2024
Addressing Misspecification in Simulation-based Inference through
  Data-driven Calibration
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Antoine Wehenkel
Juan L. Gamella
Ozan Sener
Jens Behrmann
Guillermo Sapiro
Marco Cuturi
J. Jacobsen
UQLM
64
8
0
14 May 2024
Physics-Enhanced Machine Learning: a position paper for dynamical
  systems investigations
Physics-Enhanced Machine Learning: a position paper for dynamical systems investigations
Alice Cicirello
PINN
AI4CE
42
9
0
08 May 2024
Physics-integrated generative modeling using attentive planar
  normalizing flow based variational autoencoder
Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder
Sheikh Waqas Akhtar
DRL
25
0
0
18 Apr 2024
The Causal Chambers: Real Physical Systems as a Testbed for AI
  Methodology
The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
Juan L. Gamella
Jonas Peters
Peter Buhlmann
80
8
0
17 Apr 2024
Hybrid$^2$ Neural ODE Causal Modeling and an Application to Glycemic
  Response
Hybrid2^22 Neural ODE Causal Modeling and an Application to Glycemic Response
Bob Junyi Zou
Matthew E. Levine
D. Zaharieva
Ramesh Johari
Emily Fox
41
4
0
27 Feb 2024
Deep Learning with Physics Priors as Generalized Regularizers
Deep Learning with Physics Priors as Generalized Regularizers
Frank Liu
Agniva Chowdhury
BDL
PINN
AI4CE
40
3
0
14 Dec 2023
Interpretable Mechanistic Representations for Meal-level Glycemic
  Control in the Wild
Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild
Ke Alexander Wang
Emily B. Fox
DRL
18
0
0
06 Dec 2023
Compact and Intuitive Airfoil Parameterization Method through
  Physics-aware Variational Autoencoder
Compact and Intuitive Airfoil Parameterization Method through Physics-aware Variational Autoencoder
Yu-Eop Kang
Dawoon Lee
K. Yee
19
0
0
18 Nov 2023
Physics-Informed Data Denoising for Real-Life Sensing Systems
Physics-Informed Data Denoising for Real-Life Sensing Systems
Xiyuan Zhang
Xiaohan Fu
Diyan Teng
Chengyu Dong
Keerthivasan Vijayakumar
...
Junsheng Han
Dezhi Hong
Rashmi Kulkarni
Jingbo Shang
Rajesh K. Gupta
AI4CE
PINN
6
3
0
12 Nov 2023
Dream to Adapt: Meta Reinforcement Learning by Latent Context
  Imagination and MDP Imagination
Dream to Adapt: Meta Reinforcement Learning by Latent Context Imagination and MDP Imagination
Lu Wen
Songan Zhang
E. Tseng
Huei Peng
VLM
OffRL
38
6
0
11 Nov 2023
HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
  Equations
HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing Equations
Mozes Jacobs
Bingni W. Brunton
Steven L. Brunton
J. Nathan Kutz
Ryan V. Raut
11
8
0
07 Oct 2023
DPA-WNO: A gray box model for a class of stochastic mechanics problem
DPA-WNO: A gray box model for a class of stochastic mechanics problem
Tushar
Souvik Chakraborty
DiffM
18
3
0
24 Sep 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
31
1
0
06 Sep 2023
Physics-Informed Computer Vision: A Review and Perspectives
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
28
0
29 May 2023
Using VAEs to Learn Latent Variables: Observations on Applications in
  cryo-EM
Using VAEs to Learn Latent Variables: Observations on Applications in cryo-EM
Daniel G Edelberg
Roy R. Lederman
CML
DRL
11
6
0
13 Mar 2023
Random Grid Neural Processes for Parametric Partial Differential
  Equations
Random Grid Neural Processes for Parametric Partial Differential Equations
A. Vadeboncoeur
Ieva Kazlauskaite
Y. Papandreou
F. Cirak
Mark Girolami
Ömer Deniz Akyildiz
AI4CE
20
11
0
26 Jan 2023
Modeling Nonlinear Dynamics in Continuous Time with Inductive Biases on
  Decay Rates and/or Frequencies
Modeling Nonlinear Dynamics in Continuous Time with Inductive Biases on Decay Rates and/or Frequencies
Tomoharu Iwata
Yoshinobu Kawahara
AI4TS
AI4CE
20
0
0
26 Dec 2022
Knowledge-augmented Deep Learning and Its Applications: A Survey
Knowledge-augmented Deep Learning and Its Applications: A Survey
Zijun Cui
Tian Gao
Kartik Talamadupula
Qiang Ji
27
18
0
30 Nov 2022
Physics-Informed Machine Learning: A Survey on Problems, Methods and
  Applications
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications
Zhongkai Hao
Songming Liu
Yichi Zhang
Chengyang Ying
Yao Feng
Hang Su
Jun Zhu
PINN
AI4CE
28
89
0
15 Nov 2022
Deep Grey-Box Modeling With Adaptive Data-Driven Models Toward
  Trustworthy Estimation of Theory-Driven Models
Deep Grey-Box Modeling With Adaptive Data-Driven Models Toward Trustworthy Estimation of Theory-Driven Models
Naoya Takeishi
Alexandros Kalousis
AAML
38
3
0
24 Oct 2022
Fully probabilistic deep models for forward and inverse problems in
  parametric PDEs
Fully probabilistic deep models for forward and inverse problems in parametric PDEs
A. Vadeboncoeur
Ömer Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
F. Cirak
AI4CE
23
17
0
09 Aug 2022
Estimating counterfactual treatment outcomes over time in complex
  multiagent scenarios
Estimating counterfactual treatment outcomes over time in complex multiagent scenarios
Keisuke Fujii
Koh Takeuchi
Atsushi Kuribayashi
Naoya Takeishi
Yoshinobu Kawahara
K. Takeda
CML
27
14
0
04 Jun 2022
Neural Implicit Representations for Physical Parameter Inference from a
  Single Video
Neural Implicit Representations for Physical Parameter Inference from a Single Video
Florian Hofherr
Lukas Koestler
Florian Bernard
Daniel Cremers
AI4CE
37
9
0
29 Apr 2022
Robust Hybrid Learning With Expert Augmentation
Robust Hybrid Learning With Expert Augmentation
Antoine Wehenkel
Jens Behrmann
Hsiang Hsu
Guillermo Sapiro
Gilles Louppe and
J. Jacobsen
26
8
0
08 Feb 2022
Embedded-model flows: Combining the inductive biases of model-free deep
  learning and explicit probabilistic modeling
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDL
TPM
AI4CE
28
3
0
12 Oct 2021
Neural Networks with Physics-Informed Architectures and Constraints for
  Dynamical Systems Modeling
Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Franck Djeumou
Cyrus Neary
Eric Goubault
S. Putot
Ufuk Topcu
PINN
AI4CE
42
68
0
14 Sep 2021
Disentangled Generative Models for Robust Prediction of System Dynamics
Disentangled Generative Models for Robust Prediction of System Dynamics
Stathi Fotiadis
Mario Lino Valencia
Shunlong Hu
Stef Garasto
C. Cantwell
Anil Anthony Bharath
DRL
OOD
CML
8
9
0
26 Aug 2021
Physics guided machine learning using simplified theories
Physics guided machine learning using simplified theories
Suraj Pawar
Omer San
Burak Aksoylu
Adil Rasheed
T. Kvamsdal
PINN
AI4CE
100
106
0
18 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
759
0
13 Mar 2020
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
Disentangling Physical Dynamics from Unknown Factors for Unsupervised
  Video Prediction
Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction
Vincent Le Guen
Nicolas Thome
AI4CE
PINN
89
288
0
03 Mar 2020
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
F. Lanusse
Peter Melchior
Fred Moolekamp
BDL
27
12
0
09 Dec 2019
1