Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2102.13076
Cited By
Benchmarking and Survey of Explanation Methods for Black Box Models
25 February 2021
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Benchmarking and Survey of Explanation Methods for Black Box Models"
50 / 105 papers shown
Title
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
45
81
0
25 Jun 2019
DLIME: A Deterministic Local Interpretable Model-Agnostic Explanations Approach for Computer-Aided Diagnosis Systems
Muhammad Rehman Zafar
N. Khan
FAtt
80
154
0
24 Jun 2019
LioNets: Local Interpretation of Neural Networks through Penultimate Layer Decoding
Ioannis Mollas
Nikolaos Bassiliades
Grigorios Tsoumakas
27
12
0
15 Jun 2019
XRAI: Better Attributions Through Regions
A. Kapishnikov
Tolga Bolukbasi
Fernanda Viégas
Michael Terry
FAtt
XAI
52
212
0
06 Jun 2019
Explain Yourself! Leveraging Language Models for Commonsense Reasoning
Nazneen Rajani
Bryan McCann
Caiming Xiong
R. Socher
ReLM
LRM
66
561
0
06 Jun 2019
Concept Tree: High-Level Representation of Variables for More Interpretable Surrogate Decision Trees
X. Renard
Nicolas Woloszko
Jonathan Aigrain
Marcin Detyniecki
20
11
0
04 Jun 2019
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
75
38
0
29 May 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
88
320
0
27 May 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
104
1,005
0
19 May 2019
Investigating Robustness and Interpretability of Link Prediction via Adversarial Modifications
Pouya Pezeshkpour
Yifan Tian
Sameer Singh
KELM
AAML
74
73
0
02 May 2019
Attention is not Explanation
Sarthak Jain
Byron C. Wallace
FAtt
89
1,307
0
26 Feb 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
78
1,005
0
26 Feb 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin Yu
XAI
HAI
138
1,428
0
14 Jan 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
415
8,441
0
03 Jan 2019
TED: Teaching AI to Explain its Decisions
Michael Hind
Dennis L. Wei
Murray Campbell
Noel Codella
Amit Dhurandhar
Aleksandra Mojsilović
Karthikeyan N. Ramamurthy
Kush R. Varshney
41
110
0
12 Nov 2018
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
123
1,947
0
08 Oct 2018
Local Interpretable Model-agnostic Explanations of Bayesian Predictive Models via Kullback-Leibler Projections
Tomi Peltola
FAtt
BDL
45
39
0
05 Oct 2018
RuleMatrix: Visualizing and Understanding Classifiers with Rules
Yao Ming
Huamin Qu
E. Bertini
FAtt
56
215
0
17 Jul 2018
Model Agnostic Supervised Local Explanations
Gregory Plumb
Denali Molitor
Ameet Talwalkar
FAtt
LRM
MILM
90
196
0
09 Jul 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
191
1,172
0
27 Jun 2018
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
105
938
0
20 Jun 2018
RISE: Randomized Input Sampling for Explanation of Black-box Models
Vitali Petsiuk
Abir Das
Kate Saenko
FAtt
161
1,164
0
19 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
75
1,849
0
31 May 2018
Local Rule-Based Explanations of Black Box Decision Systems
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
D. Pedreschi
Franco Turini
F. Giannotti
118
436
0
28 May 2018
Boolean Decision Rules via Column Generation
S. Dash
Oktay Gunluk
Dennis L. Wei
49
174
0
24 May 2018
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang
Xu Chen
XAI
LRM
77
870
0
30 Apr 2018
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
127
568
0
21 Feb 2018
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
96
587
0
21 Feb 2018
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
92
3,922
0
06 Feb 2018
Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Heyi Li
Yunke Tian
Klaus Mueller
Xin Chen
FAtt
56
39
0
22 Dec 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
172
1,828
0
30 Nov 2017
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR
Sandra Wachter
Brent Mittelstadt
Chris Russell
MLAU
88
2,332
0
01 Nov 2017
Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks
Aditya Chattopadhyay
Anirban Sarkar
Prantik Howlader
V. Balasubramanian
FAtt
93
2,280
0
30 Oct 2017
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
139
586
0
13 Oct 2017
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
232
4,229
0
22 Jun 2017
Explaining Recurrent Neural Network Predictions in Sentiment Analysis
L. Arras
G. Montavon
K. Müller
Wojciech Samek
FAtt
50
354
0
22 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
196
2,215
0
12 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
514
129,831
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
688
21,613
0
22 May 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
138
3,848
0
10 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
152
2,854
0
14 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
147
5,920
0
04 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
354
3,742
0
28 Feb 2017
Understanding Neural Networks through Representation Erasure
Jiwei Li
Will Monroe
Dan Jurafsky
AAML
MILM
81
562
0
24 Dec 2016
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
293
2,098
0
24 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
232
19,796
0
07 Oct 2016
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
536
28,901
0
09 Sep 2016
Tutorial on Variational Autoencoders
Carl Doersch
BDL
DRL
85
1,736
0
19 Jun 2016
Scalable Bayesian Rule Lists
Hongyu Yang
Cynthia Rudin
Margo Seltzer
TPM
37
211
0
27 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
746
16,828
0
16 Feb 2016
Previous
1
2
3
Next