ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.13076
  4. Cited By
Benchmarking and Survey of Explanation Methods for Black Box Models

Benchmarking and Survey of Explanation Methods for Black Box Models

25 February 2021
F. Bodria
F. Giannotti
Riccardo Guidotti
Francesca Naretto
D. Pedreschi
S. Rinzivillo
    XAI
ArXivPDFHTML

Papers citing "Benchmarking and Survey of Explanation Methods for Black Box Models"

50 / 105 papers shown
Title
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Feature Importance Depends on Properties of the Data: Towards Choosing the Correct Explanations for Your Data and Decision Trees based Models
Célia Wafa Ayad
Thomas Bonnier
Benjamin Bosch
Sonali Parbhoo
Jesse Read
FAtt
XAI
120
0
0
11 Feb 2025
Coherent Local Explanations for Mathematical Optimization
Coherent Local Explanations for Mathematical Optimization
Daan Otto
Jannis Kurtz
S. Ilker Birbil
77
0
0
07 Feb 2025
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
91
3
0
25 Apr 2024
Generating Likely Counterfactuals Using Sum-Product Networks
Generating Likely Counterfactuals Using Sum-Product Networks
Jiri Nemecek
Tomás Pevný
Georgios Korpas
TPM
83
0
0
25 Jan 2024
Distributional Counterfactual Explanations With Optimal Transport
Distributional Counterfactual Explanations With Optimal Transport
Lei You
Lele Cao
Mattias Nilsson
Bo Zhao
Lei Lei
OT
OffRL
83
1
0
23 Jan 2024
Opti-CAM: Optimizing saliency maps for interpretability
Opti-CAM: Optimizing saliency maps for interpretability
Hanwei Zhang
Felipe Torres
R. Sicre
Yannis Avrithis
Stéphane Ayache
67
24
0
17 Jan 2023
A Survey on Graph Counterfactual Explanations: Definitions, Methods,
  Evaluation, and Research Challenges
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges
Mario Alfonso Prado-Romero
Bardh Prenkaj
Giovanni Stilo
F. Giannotti
CML
83
32
0
21 Oct 2022
Global Counterfactual Explanations: Investigations, Implementations and
  Improvements
Global Counterfactual Explanations: Investigations, Implementations and Improvements
Dan Ley
Saumitra Mishra
Daniele Magazzeni
LRM
68
12
0
14 Apr 2022
ProtoTEx: Explaining Model Decisions with Prototype Tensors
ProtoTEx: Explaining Model Decisions with Prototype Tensors
Anubrata Das
Chitrank Gupta
Venelin Kovatchev
Matthew Lease
Junjie Li
50
27
0
11 Apr 2022
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable
  Prototypes
Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
Jonathan Donnelly
A. Barnett
Chaofan Chen
3DH
69
128
0
29 Nov 2021
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Saneem A. Chemmengath
A. Azad
Ronny Luss
Amit Dhurandhar
FAtt
57
10
0
16 Sep 2021
PACE: Posthoc Architecture-Agnostic Concept Extractor for Explaining
  CNNs
PACE: Posthoc Architecture-Agnostic Concept Extractor for Explaining CNNs
V. Kamakshi
Uday Gupta
N. C. Krishnan
40
18
0
31 Aug 2021
Interpretable Compositional Convolutional Neural Networks
Interpretable Compositional Convolutional Neural Networks
Wen Shen
Zhihua Wei
Shikun Huang
Binbin Zhang
Jiaqi Fan
Ping Zhao
Quanshi Zhang
FAtt
27
34
0
09 Jul 2021
Explaining in Style: Training a GAN to explain a classifier in
  StyleSpace
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran Lang
Yossi Gandelsman
Michal Yarom
Yoav Wald
G. Elidan
...
William T. Freeman
Phillip Isola
Amir Globerson
Michal Irani
Inbar Mosseri
GAN
85
152
0
27 Apr 2021
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey
Thomas Rojat
Raphael Puget
David Filliat
Javier Del Ser
R. Gelin
Natalia Díaz Rodríguez
XAI
AI4TS
68
131
0
02 Apr 2021
ECINN: Efficient Counterfactuals from Invertible Neural Networks
ECINN: Efficient Counterfactuals from Invertible Neural Networks
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
BDL
36
26
0
25 Mar 2021
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
137
145
0
05 Feb 2021
GLocalX -- From Local to Global Explanations of Black Box AI Models
GLocalX -- From Local to Global Explanations of Black Box AI Models
Mattia Setzu
Riccardo Guidotti
A. Monreale
Franco Turini
D. Pedreschi
F. Giannotti
41
119
0
19 Jan 2021
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and
  Improving Models
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models
Tongshuang Wu
Marco Tulio Ribeiro
Jeffrey Heer
Daniel S. Weld
85
246
0
01 Jan 2021
Generate Your Counterfactuals: Towards Controlled Counterfactual
  Generation for Text
Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for Text
Nishtha Madaan
Inkit Padhi
Naveen Panwar
Diptikalyan Saha
CML
63
99
0
08 Dec 2020
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
125
263
0
03 Dec 2020
Debugging Tests for Model Explanations
Debugging Tests for Model Explanations
Julius Adebayo
M. Muelly
Ilaria Liccardi
Been Kim
FAtt
56
179
0
10 Nov 2020
Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis
Context-Guided BERT for Targeted Aspect-Based Sentiment Analysis
Zhengxuan Wu
Desmond C. Ong
39
79
0
15 Oct 2020
A survey of algorithmic recourse: definitions, formulations, solutions,
  and prospects
A survey of algorithmic recourse: definitions, formulations, solutions, and prospects
Amir-Hossein Karimi
Gilles Barthe
Bernhard Schölkopf
Isabel Valera
FaML
54
172
0
08 Oct 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for
  Deep Learning
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
50
100
0
10 Sep 2020
Eigen-CAM: Class Activation Map using Principal Components
Eigen-CAM: Class Activation Map using Principal Components
Mohammed Bany Muhammad
M. Yeasin
40
339
0
01 Aug 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
68
393
0
03 Jun 2020
Evaluating Explainable AI: Which Algorithmic Explanations Help Users
  Predict Model Behavior?
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
Peter Hase
Joey Tianyi Zhou
FAtt
70
301
0
04 May 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
62
412
0
29 Apr 2020
A Modified Perturbed Sampling Method for Local Interpretable
  Model-agnostic Explanation
A Modified Perturbed Sampling Method for Local Interpretable Model-agnostic Explanation
Sheng Shi
Xinfeng Zhang
Wei Fan
FAtt
32
28
0
18 Feb 2020
BRPO: Batch Residual Policy Optimization
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
180
45
0
08 Feb 2020
Black Box Explanation by Learning Image Exemplars in the Latent Feature
  Space
Black Box Explanation by Learning Image Exemplars in the Latent Feature Space
Riccardo Guidotti
A. Monreale
Stan Matwin
D. Pedreschi
FAtt
75
67
0
27 Jan 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural
  Networks
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
64
348
0
17 Jan 2020
On the computation of counterfactual explanations -- A survey
On the computation of counterfactual explanations -- A survey
André Artelt
Barbara Hammer
LRM
54
50
0
15 Nov 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
110
208
0
27 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
97
6,211
0
22 Oct 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
58
203
0
21 Oct 2019
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Understanding Deep Networks via Extremal Perturbations and Smooth Masks
Ruth C. Fong
Mandela Patrick
Andrea Vedaldi
AAML
54
414
0
18 Oct 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
182
302
0
17 Oct 2019
exBERT: A Visual Analysis Tool to Explore Learned Representations in
  Transformers Models
exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformers Models
Benjamin Hoover
Hendrik Strobelt
Sebastian Gehrmann
25
85
0
11 Oct 2019
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural
  Networks
Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks
Mehdi Neshat
Zifan Wang
Bradley Alexander
Fan Yang
Zijian Zhang
Sirui Ding
Markus Wagner
Xia Hu
FAtt
80
1,056
0
03 Oct 2019
Layerwise Relevance Visualization in Convolutional Text Graph
  Classifiers
Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
Robert Schwarzenberg
Marc Hübner
David Harbecke
Christoph Alt
Leonhard Hennig
FAtt
GNN
40
69
0
24 Sep 2019
FACE: Feasible and Actionable Counterfactual Explanations
FACE: Feasible and Actionable Counterfactual Explanations
Rafael Poyiadzi
Kacper Sokol
Raúl Santos-Rodríguez
T. D. Bie
Peter A. Flach
66
368
0
20 Sep 2019
InterpretML: A Unified Framework for Machine Learning Interpretability
InterpretML: A Unified Framework for Machine Learning Interpretability
Harsha Nori
Samuel Jenkins
Paul Koch
R. Caruana
AI4CE
109
486
0
19 Sep 2019
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI
  Explainability Techniques
One Explanation Does Not Fit All: A Toolkit and Taxonomy of AI Explainability Techniques
Vijay Arya
Rachel K. E. Bellamy
Pin-Yu Chen
Amit Dhurandhar
Michael Hind
...
Karthikeyan Shanmugam
Moninder Singh
Kush R. Varshney
Dennis L. Wei
Yunfeng Zhang
XAI
35
391
0
06 Sep 2019
ALIME: Autoencoder Based Approach for Local Interpretability
ALIME: Autoencoder Based Approach for Local Interpretability
Sharath M. Shankaranarayana
D. Runje
FAtt
35
103
0
04 Sep 2019
Why Does My Model Fail? Contrastive Local Explanations for Retail
  Forecasting
Why Does My Model Fail? Contrastive Local Explanations for Retail Forecasting
Ana Lucic
H. Haned
Maarten de Rijke
54
63
0
17 Jul 2019
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical
  XAI
A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Erico Tjoa
Cuntai Guan
XAI
89
1,427
0
17 Jul 2019
Explaining Classifiers with Causal Concept Effect (CaCE)
Explaining Classifiers with Causal Concept Effect (CaCE)
Yash Goyal
Amir Feder
Uri Shalit
Been Kim
CML
69
175
0
16 Jul 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
49
380
0
03 Jul 2019
123
Next