ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2102.11582
  4. Cited By
Deep Deterministic Uncertainty: A Simple Baseline

Deep Deterministic Uncertainty: A Simple Baseline

23 February 2021
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Philip Torr
Y. Gal
    UD
    UQCV
    PER
    BDL
ArXivPDFHTML

Papers citing "Deep Deterministic Uncertainty: A Simple Baseline"

35 / 35 papers shown
Title
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Yun Qu
Luu Anh Tuan
Yixiu Mao
Yiqin Lv
Xiangyang Ji
TTA
90
0
0
27 Apr 2025
Are We Done with Object-Centric Learning?
Are We Done with Object-Centric Learning?
Alexander Rubinstein
Ameya Prabhu
Matthias Bethge
Seong Joon Oh
OCL
658
0
0
09 Apr 2025
Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding
Jinlong Li
Cristiano Saltori
Fabio Poiesi
N. Sebe
192
0
0
20 Mar 2025
Rethinking Epistemic and Aleatoric Uncertainty for Active Open-Set Annotation: An Energy-Based Approach
Rethinking Epistemic and Aleatoric Uncertainty for Active Open-Set Annotation: An Energy-Based Approach
Chen-Chen Zong
Sheng-Jun Huang
EDL
92
0
0
27 Feb 2025
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Logit Disagreement: OoD Detection with Bayesian Neural Networks
Kevin Raina
UQCV
BDL
UD
PER
66
0
0
24 Feb 2025
Interpretable Failure Detection with Human-Level Concepts
Interpretable Failure Detection with Human-Level Concepts
Kien X. Nguyen
Tang Li
Xi Peng
53
0
0
07 Feb 2025
A Unified Evaluation Framework for Epistemic Predictions
A Unified Evaluation Framework for Epistemic Predictions
Shireen Kudukkil Manchingal
Muhammad Mubashar
Kaizheng Wang
Fabio Cuzzolin
UQCV
67
2
0
28 Jan 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks
Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks
Wataru Hashimoto
Hidetaka Kamigaito
Taro Watanabe
60
0
0
02 Jul 2024
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification
Kaizheng Wang
Fabio Cuzzolin
Keivan K1 Shariatmadar
David Moens
Hans Hallez
UQCV
BDL
85
0
0
23 May 2024
Conformal Semantic Image Segmentation: Post-hoc Quantification of
  Predictive Uncertainty
Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty
Luca Mossina
Joseba Dalmau
Léo Andéol
UQCV
40
12
0
16 Apr 2024
Semi-Supervised Dialogue Abstractive Summarization via High-Quality
  Pseudolabel Selection
Semi-Supervised Dialogue Abstractive Summarization via High-Quality Pseudolabel Selection
Jianfeng He
Hang Su
Jason (Jinglun) Cai
Igor Shalyminov
Hwanjun Song
Saab Mansour
32
4
0
06 Mar 2024
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and
  Monocular Depth Estimation
Efficient Multi-task Uncertainties for Joint Semantic Segmentation and Monocular Depth Estimation
S. Landgraf
Markus Hillemann
Theodor Kapler
Markus Ulrich
UQCV
28
8
0
16 Feb 2024
Adversarial Attacks Against Uncertainty Quantification
Adversarial Attacks Against Uncertainty Quantification
Emanuele Ledda
Daniele Angioni
Giorgio Piras
Giorgio Fumera
Battista Biggio
Fabio Roli
AAML
35
2
0
19 Sep 2023
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic
  Segmentation
On the Calibration of Uncertainty Estimation in LiDAR-based Semantic Segmentation
M. Dreissig
Florian Piewak
Joschka Boedecker
UQCV
21
6
0
04 Aug 2023
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation
S. Landgraf
Markus Hillemann
Kira Wursthorn
Markus Ulrich
SSeg
UQCV
26
6
0
19 Jul 2023
Quantification of Uncertainty with Adversarial Models
Quantification of Uncertainty with Adversarial Models
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
G. Klambauer
Sepp Hochreiter
UQCV
42
14
0
06 Jul 2023
Beyond Confidence: Reliable Models Should Also Consider Atypicality
Beyond Confidence: Reliable Models Should Also Consider Atypicality
Mert Yuksekgonul
Linjun Zhang
James Zou
Carlos Guestrin
32
20
0
29 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
64
1
0
26 May 2023
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep
  Neural Networks: The Case of Reject Option and Post-training Processing
Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing
M. Hasan
Moloud Abdar
Abbas Khosravi
U. Aickelin
Pietro Lio
Ibrahim Hossain
Ashikur Rahman
Saeid Nahavandi
35
4
0
11 Apr 2023
Uncertainty estimation in Deep Learning for Panoptic segmentation
Uncertainty estimation in Deep Learning for Panoptic segmentation
Michael J. Smith
F. Ferrie
OOD
UQCV
35
0
0
04 Apr 2023
On the Variance of Neural Network Training with respect to Test Sets and
  Distributions
On the Variance of Neural Network Training with respect to Test Sets and Distributions
Keller Jordan
OOD
24
10
0
04 Apr 2023
Robust Fusion for Bayesian Semantic Mapping
Robust Fusion for Bayesian Semantic Mapping
David Morilla-Cabello
Lorenzo Mur-Labadia
Ruben Martinez-Cantin
Eduardo Montijano
44
11
0
14 Mar 2023
Evaluating Robustness and Uncertainty of Graph Models Under Structural
  Distributional Shifts
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
Gleb Bazhenov
Denis Kuznedelev
A. Malinin
Artem Babenko
Liudmila Prokhorenkova
OOD
19
3
0
27 Feb 2023
Beyond Distribution Shift: Spurious Features Through the Lens of
  Training Dynamics
Beyond Distribution Shift: Spurious Features Through the Lens of Training Dynamics
Nihal Murali
A. Puli
Ke Yu
Rajesh Ranganath
Kayhan Batmanghelich
AAML
43
8
0
18 Feb 2023
Neural networks learn to magnify areas near decision boundaries
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
Cengiz Pehlevan
MLT
AI4CE
25
6
0
26 Jan 2023
Evolutionary Generalized Zero-Shot Learning
Evolutionary Generalized Zero-Shot Learning
Dubing Chen
Haofeng Zhang
Yang Long
VLM
34
1
0
23 Nov 2022
Soft Augmentation for Image Classification
Soft Augmentation for Image Classification
Yang Liu
Shen Yan
Laura Leal-Taixé
James Hays
Deva Ramanan
29
11
0
09 Nov 2022
Uncertainty-aware LiDAR Panoptic Segmentation
Uncertainty-aware LiDAR Panoptic Segmentation
Kshitij Sirohi
Sajad Marvi
Daniel Buscher
Wolfram Burgard
3DPC
UQCV
34
6
0
10 Oct 2022
Out-of-Distribution Detection and Selective Generation for Conditional
  Language Models
Out-of-Distribution Detection and Selective Generation for Conditional Language Models
Jie Jessie Ren
Jiaming Luo
Yao-Min Zhao
Kundan Krishna
Mohammad Saleh
Balaji Lakshminarayanan
Peter J. Liu
OODD
72
96
0
30 Sep 2022
ScaleFace: Uncertainty-aware Deep Metric Learning
ScaleFace: Uncertainty-aware Deep Metric Learning
Roma Kail
Kirill Fedyanin
Nikita Muravev
Alexey Zaytsev
Maxim Panov
CVBM
UQCV
30
5
0
05 Sep 2022
Pareto Optimization for Active Learning under Out-of-Distribution Data
  Scenarios
Pareto Optimization for Active Learning under Out-of-Distribution Data Scenarios
Xueying Zhan
Zeyu Dai
Qingzhong Wang
Qing Li
Haoyi Xiong
Dejing Dou
Antoni B. Chan
OODD
11
3
0
04 Jul 2022
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PER
UQLM
UQCV
UD
204
81
0
16 Feb 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1