ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2011.02268
  4. Cited By
Causal Autoregressive Flows

Causal Autoregressive Flows

4 November 2020
Ilyes Khemakhem
R. Monti
R. Leech
Aapo Hyvarinen
    CML
    OOD
    AI4CE
ArXivPDFHTML

Papers citing "Causal Autoregressive Flows"

30 / 30 papers shown
Title
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
Yuxing Huang
Wenqin Liu
Haoran Deng
Ignavier Ng
Kun Zhang
Biwei Huang
Yi-An Ma
Zhen Zhang
81
1
0
08 Oct 2024
Amortized Inference of Causal Models via Conditional Fixed-Point Iterations
Amortized Inference of Causal Models via Conditional Fixed-Point Iterations
Divyat Mahajan
Jannes Gladrow
Agrin Hilmkil
Cheng Zhang
M. Scetbon
97
2
0
08 Oct 2024
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
76
1
0
29 Jul 2023
Deep Structural Causal Models for Tractable Counterfactual Inference
Deep Structural Causal Models for Tractable Counterfactual Inference
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
CML
MedIm
104
237
0
11 Jun 2020
Graphical Normalizing Flows
Graphical Normalizing Flows
Antoine Wehenkel
Gilles Louppe
TPM
BDL
49
37
0
03 Jun 2020
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
  Nonlinear ICA
ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA
Ilyes Khemakhem
R. Monti
Diederik P. Kingma
Aapo Hyvarinen
CML
64
114
0
26 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
205
1,697
0
05 Dec 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
71
595
0
10 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
176
775
0
10 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
78
58
0
05 Jun 2019
Causal Discovery with General Non-Linear Relationships Using Non-Linear
  ICA
Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
R. Monti
Kun Zhang
Aapo Hyvarinen
CML
76
93
0
19 Apr 2019
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
295
3,134
0
09 Jul 2018
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive
  Learning
Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning
Aapo Hyvarinen
Hiroaki Sasaki
Richard Turner
OOD
CML
95
330
0
22 May 2018
Neural Autoregressive Flows
Neural Autoregressive Flows
Chin-Wei Huang
David M. Krueger
Alexandre Lacoste
Aaron Courville
DRL
AI4CE
143
442
0
03 Apr 2018
DAGs with NO TEARS: Continuous Optimization for Structure Learning
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Xun Zheng
Bryon Aragam
Pradeep Ravikumar
Eric Xing
NoLa
CML
OffRL
96
942
0
04 Mar 2018
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
206
743
0
24 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,352
0
19 May 2017
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
137
1,820
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
266
3,696
0
26 May 2016
Unsupervised Feature Extraction by Time-Contrastive Learning and
  Nonlinear ICA
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CML
OOD
AI4TS
61
409
0
20 May 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
313
4,182
0
21 May 2015
Distinguishing Cause from Effect Based on Exogeneity
Distinguishing Cause from Effect Based on Exogeneity
Kun Zhang
Jiji Zhang
Bernhard Schölkopf
CML
44
35
0
22 Apr 2015
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OOD
SyDa
UQCV
170
868
0
12 Feb 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
120
971
0
06 Jan 2015
Machine Learning for Neuroimaging with Scikit-Learn
Machine Learning for Neuroimaging with Scikit-Learn
Alexandre Abraham
Fabian Pedregosa
Michael Eickenberg
Philippe Gervais
A. Mueller
Jean Kossaifi
Alexandre Gramfort
Bertrand Thirion
Gaël Varoquaux
AI4CE
63
1,817
0
12 Dec 2014
Distinguishing cause from effect using observational data: methods and
  benchmarks
Distinguishing cause from effect using observational data: methods and benchmarks
Joris M. Mooij
J. Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
CML
117
138
0
11 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
123
2,258
0
30 Oct 2014
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
103
569
0
26 Sep 2013
On the Identifiability of the Post-Nonlinear Causal Model
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
196
565
0
09 May 2012
DirectLiNGAM: A direct method for learning a linear non-Gaussian
  structural equation model
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
Shohei Shimizu
Takanori Inazumi
Yasuhiro Sogawa
Aapo Hyvarinen
Yoshinobu Kawahara
Takashi Washio
P. Hoyer
K. Bollen
CML
102
511
0
13 Jan 2011
1