ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2010.10866
  4. Cited By
PARENTing via Model-Agnostic Reinforcement Learning to Correct
  Pathological Behaviors in Data-to-Text Generation

PARENTing via Model-Agnostic Reinforcement Learning to Correct Pathological Behaviors in Data-to-Text Generation

21 October 2020
Clément Rebuffel
Laure Soulier
Geoffrey Scoutheeten
Patrick Gallinari
ArXivPDFHTML

Papers citing "PARENTing via Model-Agnostic Reinforcement Learning to Correct Pathological Behaviors in Data-to-Text Generation"

25 / 25 papers shown
Title
A Hierarchical Model for Data-to-Text Generation
A Hierarchical Model for Data-to-Text Generation
Clément Rebuffel
Laure Soulier
Geoffrey Scoutheeten
Patrick Gallinari
53
64
0
20 Dec 2019
Semantic Noise Matters for Neural Natural Language Generation
Semantic Noise Matters for Neural Natural Language Generation
Ondrej Dusek
David M. Howcroft
Verena Rieser
64
118
0
10 Nov 2019
Evaluating the Factual Consistency of Abstractive Text Summarization
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
HILM
85
739
0
28 Oct 2019
Sticking to the Facts: Confident Decoding for Faithful Data-to-Text
  Generation
Sticking to the Facts: Confident Decoding for Faithful Data-to-Text Generation
Ran Tian
Shashi Narayan
Thibault Sellam
Ankur P. Parikh
HILM
65
94
0
19 Oct 2019
Answers Unite! Unsupervised Metrics for Reinforced Summarization Models
Answers Unite! Unsupervised Metrics for Reinforced Summarization Models
Thomas Scialom
Sylvain Lamprier
Benjamin Piwowarski
Jacopo Staiano
60
149
0
04 Sep 2019
Data-to-text Generation with Entity Modeling
Data-to-text Generation with Entity Modeling
Ratish Puduppully
Li Dong
Mirella Lapata
38
116
0
07 Jun 2019
Handling Divergent Reference Texts when Evaluating Table-to-Text
  Generation
Handling Divergent Reference Texts when Evaluating Table-to-Text Generation
Bhuwan Dhingra
Manaal Faruqui
Ankur P. Parikh
Ming-Wei Chang
Dipanjan Das
William W. Cohen
61
195
0
03 Jun 2019
Deep Graph Convolutional Encoders for Structured Data to Text Generation
Deep Graph Convolutional Encoders for Structured Data to Text Generation
Diego Marcheggiani
Laura Perez-Beltrachini
GNN
45
122
0
23 Oct 2018
Object Hallucination in Image Captioning
Object Hallucination in Image Captioning
Anna Rohrbach
Lisa Anne Hendricks
Kaylee Burns
Trevor Darrell
Kate Saenko
136
418
0
06 Sep 2018
Bootstrapping Generators from Noisy Data
Bootstrapping Generators from Noisy Data
Laura Perez-Beltrachini
Mirella Lapata
47
40
0
17 Apr 2018
Table-to-text Generation by Structure-aware Seq2seq Learning
Table-to-text Generation by Structure-aware Seq2seq Learning
Tianyu Liu
Kexiang Wang
Lei Sha
Baobao Chang
Zhifang Sui
LMTD
57
266
0
27 Nov 2017
Challenges in Data-to-Document Generation
Challenges in Data-to-Document Generation
Sam Wiseman
Stuart M. Shieber
Alexander M. Rush
116
586
0
25 Jul 2017
Why We Need New Evaluation Metrics for NLG
Why We Need New Evaluation Metrics for NLG
Jekaterina Novikova
Ondrej Dusek
Amanda Cercas Curry
Verena Rieser
69
456
0
21 Jul 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
526
129,831
0
12 Jun 2017
A Deep Reinforced Model for Abstractive Summarization
A Deep Reinforced Model for Abstractive Summarization
Romain Paulus
Caiming Xiong
R. Socher
AI4TS
163
1,551
0
11 May 2017
Get To The Point: Summarization with Pointer-Generator Networks
Get To The Point: Summarization with Pointer-Generator Networks
A. See
Peter J. Liu
Christopher D. Manning
3DPC
214
4,006
0
14 Apr 2017
Survey of the State of the Art in Natural Language Generation: Core
  tasks, applications and evaluation
Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
Albert Gatt
E. Krahmer
LM&MA
ELM
86
814
0
29 Mar 2017
OpenNMT: Open-Source Toolkit for Neural Machine Translation
OpenNMT: Open-Source Toolkit for Neural Machine Translation
Guillaume Klein
Yoon Kim
Yuntian Deng
Jean Senellart
Alexander M. Rush
321
1,897
0
10 Jan 2017
Self-critical Sequence Training for Image Captioning
Self-critical Sequence Training for Image Captioning
Steven J. Rennie
E. Marcheret
Youssef Mroueh
Jerret Ross
Vaibhava Goel
103
1,882
0
02 Dec 2016
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhiwen Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
836
6,768
0
26 Sep 2016
Pointing the Unknown Words
Pointing the Unknown Words
Çağlar Gülçehre
Sungjin Ahn
Ramesh Nallapati
Bowen Zhou
Yoshua Bengio
43
524
0
26 Mar 2016
How NOT To Evaluate Your Dialogue System: An Empirical Study of
  Unsupervised Evaluation Metrics for Dialogue Response Generation
How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation
Chia-Wei Liu
Ryan J. Lowe
Iulian Serban
Michael Noseworthy
Laurent Charlin
Joelle Pineau
94
1,292
0
25 Mar 2016
Sequence Level Training with Recurrent Neural Networks
Sequence Level Training with Recurrent Neural Networks
MarcÁurelio Ranzato
S. Chopra
Michael Auli
Wojciech Zaremba
90
1,611
0
20 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
292
19,523
0
09 Mar 2015
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
424
27,205
0
01 Sep 2014
1