ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.01610
22
149

Answers Unite! Unsupervised Metrics for Reinforced Summarization Models

4 September 2019
Thomas Scialom
Sylvain Lamprier
Benjamin Piwowarski
Jacopo Staiano
ArXivPDFHTML
Abstract

Abstractive summarization approaches based on Reinforcement Learning (RL) have recently been proposed to overcome classical likelihood maximization. RL enables to consider complex, possibly non-differentiable, metrics that globally assess the quality and relevance of the generated outputs. ROUGE, the most used summarization metric, is known to suffer from bias towards lexical similarity as well as from suboptimal accounting for fluency and readability of the generated abstracts. We thus explore and propose alternative evaluation measures: the reported human-evaluation analysis shows that the proposed metrics, based on Question Answering, favorably compares to ROUGE -- with the additional property of not requiring reference summaries. Training a RL-based model on these metrics leads to improvements (both in terms of human or automated metrics) over current approaches that use ROUGE as a reward.

View on arXiv
Comments on this paper