Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2008.10581
Cited By
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
24 August 2020
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems"
38 / 38 papers shown
Title
Density Ratio Estimation with Conditional Probability Paths
Hanlin Yu
Arto Klami
Aapo Hyvarinen
Anna Korba
Omar Chehab
81
0
0
04 Feb 2025
Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net
Wenjie Luo
Binh Yang
R. Urtasun
3DPC
44
620
0
22 Dec 2020
A Survey of Algorithms for Black-Box Safety Validation of Cyber-Physical Systems
Anthony Corso
Robert J. Moss
Mark Koren
Ritchie Lee
Mykel J. Kochenderfer
51
175
0
06 May 2020
Neuroevolution of Self-Interpretable Agents
Yujin Tang
Duong Nguyen
David R Ha
53
111
0
18 Mar 2020
Trustworthy AI
Jeannette M. Wing
35
218
0
14 Feb 2020
Anomaly Detection with Density Estimation
Benjamin Nachman
David Shih
18
218
0
14 Jan 2020
Efficient Black-box Assessment of Autonomous Vehicle Safety
J. Norden
Matthew O'Kelly
Aman Sinha
43
66
0
08 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
110
1,662
0
05 Dec 2019
Case Study: Verifying the Safety of an Autonomous Racing Car with a Neural Network Controller
Radoslav Ivanov
Taylor J. Carpenter
James Weimer
Rajeev Alur
George J. Pappas
Insup Lee
37
81
0
24 Oct 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
25
101
0
29 May 2019
Monocular Plan View Networks for Autonomous Driving
Dequan Wang
Coline Devin
Qi-Zhi Cai
Philipp Krahenbuhl
Trevor Darrell
38
81
0
16 May 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
40
105
0
09 Mar 2019
ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst
Mayank Bansal
A. Krizhevsky
A. Ogale
OOD
49
736
0
07 Dec 2018
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures
Junhui Yin
Jiayan Qiu
Csaba Szepesvári
Siqing Zhang
Avraham Ruderman
Jiyang Xie
Krishnamurthy Dvijotham
Zhanyu Ma
N. Heess
Pushmeet Kohli
AAML
49
80
0
04 Dec 2018
In-silico Risk Analysis of Personalized Artificial Pancreas Controllers via Rare-event Simulation
Matthew O'Kelly
Aman Sinha
J. Norden
Hongseok Namkoong
14
1
0
02 Dec 2018
A Statistical Approach to Assessing Neural Network Robustness
Stefan Webb
Tom Rainforth
Yee Whye Teh
M. P. Kumar
AAML
45
82
0
17 Nov 2018
Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation
Matthew O'Kelly
Aman Sinha
Hongseok Namkoong
John C. Duchi
Russ Tedrake
39
217
0
31 Oct 2018
World Models
David R Ha
Jürgen Schmidhuber
SyDa
88
1,050
0
27 Mar 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
51
1,862
0
02 Jan 2018
Evaluating Robustness of Neural Networks with Mixed Integer Programming
Vincent Tjeng
Kai Y. Xiao
Russ Tedrake
AAML
63
117
0
20 Nov 2017
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
71
858
0
29 Oct 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
94
106
0
23 Aug 2017
On a Formal Model of Safe and Scalable Self-driving Cars
Shai Shalev-Shwartz
Shaked Shammah
Amnon Shashua
22
736
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
188
11,962
0
19 Jun 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
96
1,340
0
19 May 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
282
1,849
0
03 Feb 2017
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
74
1,805
0
15 Jun 2016
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
162
5,048
0
05 Jun 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
200
17,235
0
17 Feb 2016
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
45
410
0
17 Jul 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
223
4,143
0
21 May 2015
Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations
Peyman Mohajerin Esfahani
Daniel Kuhn
41
1,641
0
19 May 2015
Optimal rates for zero-order convex optimization: the power of two function evaluations
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
Andre Wibisono
43
480
0
07 Dec 2013
Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions
Ari Pakman
Liam Paninski
74
80
0
09 Nov 2013
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions
Shiwei Lan
Bo Zhou
Babak Shahbaba
59
58
0
17 Sep 2013
Exact Hamiltonian Monte Carlo for Truncated Multivariate Gaussians
Ari Pakman
Liam Paninski
58
221
0
20 Aug 2012
MCMC using Hamiltonian dynamics
Radford M. Neal
280
3,278
0
09 Jun 2012
Split Hamiltonian Monte Carlo
Babak Shahbaba
Shiwei Lan
W. Johnson
Radford M. Neal
124
92
0
29 Jun 2011
1