ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.08157
  4. Cited By
Heteroscedastic Uncertainty for Robust Generative Latent Dynamics
v1v2 (latest)

Heteroscedastic Uncertainty for Robust Generative Latent Dynamics

18 August 2020
Oliver Limoyo
Bryan Chan
Filip Marić
Brandon Wagstaff
Rupam Mahmood
Jonathan Kelly
ArXiv (abs)PDFHTML

Papers citing "Heteroscedastic Uncertainty for Robust Generative Latent Dynamics"

23 / 23 papers shown
Title
Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
Multimodal and Force-Matched Imitation Learning with a See-Through Visuotactile Sensor
Trevor Ablett
Oliver Limoyo
Adam Sigal
Affan Jilani
Jonathan Kelly
Kaleem Siddiqi
F. Hogan
Gregory Dudek
92
5
0
28 Jan 2025
Unsupervised Separation of Dynamics from Pixels
Unsupervised Separation of Dynamics from Pixels
Silvia Chiappa
Ulrich Paquet
OCL
52
4
0
20 Jul 2019
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
88
1,437
0
12 Nov 2018
Benchmarking Reinforcement Learning Algorithms on Real-World Robots
Benchmarking Reinforcement Learning Algorithms on Real-World Robots
A. R. Mahmood
D. Korenkevych
Gautham Vasan
W. Ma
James Bergstra
OffRL
56
156
0
20 Sep 2018
Recurrent World Models Facilitate Policy Evolution
Recurrent World Models Facilitate Policy Evolution
David R Ha
Jürgen Schmidhuber
SyDaTPM
117
944
0
04 Sep 2018
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
71
283
0
16 Oct 2017
Robust Locally-Linear Controllable Embedding
Robust Locally-Linear Controllable Embedding
Ershad Banijamali
Rui Shu
Mohammad Ghavamzadeh
Hung Bui
A. Ghodsi
BDL
54
95
0
15 Oct 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
840
5,821
0
05 Dec 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
90
457
0
30 Sep 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRLODL
223
5,077
0
05 Jun 2016
Backprop KF: Learning Discriminative Deterministic State Estimators
Backprop KF: Learning Discriminative Deterministic State Estimators
Tuomas Haarnoja
Anurag Ajay
Sergey Levine
Pieter Abbeel
56
201
0
23 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space
  Models from Raw Data
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
51
375
0
20 May 2016
Composing graphical models with neural networks for structured
  representations and fast inference
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDLOCL
92
484
0
20 Mar 2016
Embed to Control: A Locally Linear Latent Dynamics Model for Control
  from Raw Images
Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
Manuel Watter
Jost Tobias Springenberg
Joschka Boedecker
Martin Riedmiller
BDL
82
846
0
24 Jun 2015
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
87
1,259
0
07 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
827
9,318
0
06 Jun 2015
DRAW: A Recurrent Neural Network For Image Generation
DRAW: A Recurrent Neural Network For Image Generation
Karol Gregor
Ivo Danihelka
Alex Graves
Danilo Jimenez Rezende
Daan Wierstra
GANDRL
168
1,961
0
16 Feb 2015
From Pixels to Torques: Policy Learning with Deep Dynamical Models
From Pixels to Torques: Policy Learning with Deep Dynamical Models
Niklas Wahlström
Thomas B. Schon
M. Deisenroth
74
189
0
08 Feb 2015
Generalized Product of Experts for Automatic and Principled Fusion of
  Gaussian Process Predictions
Generalized Product of Experts for Automatic and Principled Fusion of Gaussian Process Predictions
Yanshuai Cao
David J. Fleet
44
186
0
28 Oct 2014
On the Properties of Neural Machine Translation: Encoder-Decoder
  Approaches
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
Kyunghyun Cho
B. V. Merrienboer
Dzmitry Bahdanau
Yoshua Bengio
AI4CEAIMat
251
6,779
0
03 Sep 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
127
12,231
0
19 Dec 2013
Dyna-Style Planning with Linear Function Approximation and Prioritized
  Sweeping
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping
R. Sutton
Csaba Szepesvári
A. Geramifard
Michael Bowling
OffRL
83
204
0
13 Jun 2012
1