ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2008.06822
  4. Cited By
Relevance Attack on Detectors

Relevance Attack on Detectors

16 August 2020
Sizhe Chen
Fan He
Xiaolin Huang
Kun Zhang
    AAML
ArXivPDFHTML

Papers citing "Relevance Attack on Detectors"

50 / 50 papers shown
Title
Dual Attention Suppression Attack: Generate Adversarial Camouflage in
  Physical World
Dual Attention Suppression Attack: Generate Adversarial Camouflage in Physical World
Jiakai Wang
Aishan Liu
Zixin Yin
Shunchang Liu
Shiyu Tang
Xianglong Liu
AAML
153
198
0
01 Mar 2021
Fooling Object Detectors: Adversarial Attacks by Half-Neighbor Masks
Fooling Object Detectors: Adversarial Attacks by Half-Neighbor Masks
Yanghao Zhang
Fu Lee Wang
Wenjie Ruan
AAML
61
10
0
04 Jan 2021
A Black-box Adversarial Attack Strategy with Adjustable Sparsity and
  Generalizability for Deep Image Classifiers
A Black-box Adversarial Attack Strategy with Adjustable Sparsity and Generalizability for Deep Image Classifiers
Arka Ghosh
S. S. Mullick
Shounak Datta
Swagatam Das
R. Mallipeddi
A. Das
AAML
18
37
0
24 Apr 2020
Skip Connections Matter: On the Transferability of Adversarial Examples
  Generated with ResNets
Skip Connections Matter: On the Transferability of Adversarial Examples Generated with ResNets
Dongxian Wu
Yisen Wang
Shutao Xia
James Bailey
Xingjun Ma
AAML
SILM
44
312
0
14 Feb 2020
Universal Adversarial Attack on Attention and the Resulting Dataset
  DAmageNet
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie Yang
Xiaolin Huang
AAML
33
104
0
16 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
76
42,038
0
03 Dec 2019
EfficientDet: Scalable and Efficient Object Detection
EfficientDet: Scalable and Efficient Object Detection
Mingxing Tan
Ruoming Pang
Quoc V. Le
52
4,996
0
20 Nov 2019
Making an Invisibility Cloak: Real World Adversarial Attacks on Object
  Detectors
Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors
Zuxuan Wu
Ser-Nam Lim
L. Davis
Tom Goldstein
AAML
87
264
0
31 Oct 2019
Universal Physical Camouflage Attacks on Object Detectors
Universal Physical Camouflage Attacks on Object Detectors
Lifeng Huang
Chengying Gao
Yuyin Zhou
Cihang Xie
Alan Yuille
C. Zou
Ning Liu
AAML
148
163
0
10 Sep 2019
Nesterov Accelerated Gradient and Scale Invariance for Adversarial
  Attacks
Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks
Jiadong Lin
Chuanbiao Song
Kun He
Liwei Wang
John E. Hopcroft
AAML
43
562
0
17 Aug 2019
Explaining Convolutional Neural Networks using Softmax Gradient
  Layer-wise Relevance Propagation
Explaining Convolutional Neural Networks using Softmax Gradient Layer-wise Relevance Propagation
Brian Kenji Iwana
Ryohei Kuroki
S. Uchida
FAtt
35
96
0
06 Aug 2019
Towards Adversarially Robust Object Detection
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
77
130
0
24 Jul 2019
Mimic and Fool: A Task Agnostic Adversarial Attack
Mimic and Fool: A Task Agnostic Adversarial Attack
Akshay Chaturvedi
Utpal Garain
AAML
25
26
0
11 Jun 2019
Cross-Domain Transferability of Adversarial Perturbations
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
Fahad Shahbaz Khan
Fatih Porikli
AAML
43
145
0
28 May 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAML
GAN
FAtt
66
161
0
23 May 2019
Fooling automated surveillance cameras: adversarial patches to attack
  person detection
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
84
567
0
18 Apr 2019
Evading Defenses to Transferable Adversarial Examples by
  Translation-Invariant Attacks
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
58
836
0
05 Apr 2019
Adversarial Attacks on Time Series
Adversarial Attacks on Time Series
Fazle Karim
Somshubra Majumdar
H. Darabi
AI4TS
25
98
0
27 Feb 2019
Hybrid Task Cascade for Instance Segmentation
Hybrid Task Cascade for Instance Segmentation
Kai-xiang Chen
Jiangmiao Pang
Jiaqi Wang
Yu Xiong
Xiaoxiao Li
...
Ziwei Liu
Jianping Shi
Wanli Ouyang
Chen Change Loy
Dahua Lin
ISeg
90
1,295
0
22 Jan 2019
Understanding Individual Decisions of CNNs via Contrastive
  Backpropagation
Understanding Individual Decisions of CNNs via Contrastive Backpropagation
Jindong Gu
Yinchong Yang
Volker Tresp
FAtt
19
94
0
05 Dec 2018
Interpretable Deep Learning under Fire
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
51
169
0
03 Dec 2018
Exploring the Vulnerability of Single Shot Module in Object Detectors
  via Imperceptible Background Patches
Exploring the Vulnerability of Single Shot Module in Object Detectors via Imperceptible Background Patches
Yuezun Li
Xiao Bian
Ming-Ching Chang
Siwei Lyu
AAML
ObjD
37
31
0
16 Sep 2018
Robust Adversarial Perturbation on Deep Proposal-based Models
Robust Adversarial Perturbation on Deep Proposal-based Models
Yuezun Li
Dan Tian
Ming-Ching Chang
Xiao Bian
Siwei Lyu
AAML
26
105
0
16 Sep 2018
iNNvestigate neural networks!
iNNvestigate neural networks!
Maximilian Alber
Sebastian Lapuschkin
P. Seegerer
Miriam Hagele
Kristof T. Schütt
G. Montavon
Wojciech Samek
K. Müller
Sven Dähne
Pieter-Jan Kindermans
41
348
0
13 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the
  Robustness of 18 Deep Image Classification Models
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
71
390
0
05 Aug 2018
YOLOv3: An Incremental Improvement
YOLOv3: An Incremental Improvement
Joseph Redmon
Ali Farhadi
ObjD
28
21,306
0
08 Apr 2018
Improving Transferability of Adversarial Examples with Input Diversity
Improving Transferability of Adversarial Examples with Input Diversity
Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
AAML
68
1,108
0
19 Mar 2018
Generalizable Data-free Objective for Crafting Universal Adversarial
  Perturbations
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
68
205
0
24 Jan 2018
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box
  Machine Learning Models
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
Wieland Brendel
Jonas Rauber
Matthias Bethge
AAML
53
1,335
0
12 Dec 2017
Adversarial Examples that Fool Detectors
Adversarial Examples that Fool Detectors
Jiajun Lu
Hussein Sibai
Evan Fabry
AAML
44
144
0
07 Dec 2017
Cascade R-CNN: Delving into High Quality Object Detection
Cascade R-CNN: Delving into High Quality Object Detection
Zhaowei Cai
Nuno Vasconcelos
ObjD
92
4,885
0
03 Dec 2017
Interpretation of Neural Networks is Fragile
Interpretation of Neural Networks is Fragile
Amirata Ghorbani
Abubakar Abid
James Zou
FAtt
AAML
91
861
0
29 Oct 2017
One pixel attack for fooling deep neural networks
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
88
2,311
0
24 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
175
11,962
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
149
2,712
0
19 May 2017
Learning Important Features Through Propagating Activation Differences
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
50
3,848
0
10 Apr 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
76
928
0
24 Mar 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
224
27,018
0
20 Mar 2017
Delving into Transferable Adversarial Examples and Black-box Attacks
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
103
1,727
0
08 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
156
19,796
0
07 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
146
8,497
0
16 Aug 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
24
3,656
0
08 Feb 2016
SSD: Single Shot MultiBox Detector
SSD: Single Shot MultiBox Detector
Wen Liu
Dragomir Anguelov
D. Erhan
Christian Szegedy
Scott E. Reed
Cheng-Yang Fu
Alexander C. Berg
ObjD
BDL
106
29,646
0
08 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
275
27,231
0
02 Dec 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
321
61,900
0
04 Jun 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
110
18,922
0
20 Dec 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
121
43,290
0
01 May 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
68
14,831
1
21 Dec 2013
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
68
7,252
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
99
15,825
0
12 Nov 2013
1