ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04606
11
26

Mimic and Fool: A Task Agnostic Adversarial Attack

11 June 2019
Akshay Chaturvedi
Utpal Garain
    AAML
ArXivPDFHTML
Abstract

At present, adversarial attacks are designed in a task-specific fashion. However, for downstream computer vision tasks such as image captioning, image segmentation etc., the current deep learning systems use an image classifier like VGG16, ResNet50, Inception-v3 etc. as a feature extractor. Keeping this in mind, we propose Mimic and Fool, a task agnostic adversarial attack. Given a feature extractor, the proposed attack finds an adversarial image which can mimic the image feature of the original image. This ensures that the two images give the same (or similar) output regardless of the task. We randomly select 1000 MSCOCO validation images for experimentation. We perform experiments on two image captioning models, Show and Tell, Show Attend and Tell and one VQA model, namely, end-to-end neural module network (N2NMN). The proposed attack achieves success rate of 74.0%, 81.0% and 87.1% for Show and Tell, Show Attend and Tell and N2NMN respectively. We also propose a slight modification to our attack to generate natural-looking adversarial images. In addition, we also show the applicability of the proposed attack for invertible architecture. Since Mimic and Fool only requires information about the feature extractor of the model, it can be considered as a gray-box attack.

View on arXiv
Comments on this paper