ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.05966
17
31

Exploring the Vulnerability of Single Shot Module in Object Detectors via Imperceptible Background Patches

16 September 2018
Yuezun Li
Xiao Bian
Ming-Ching Chang
Siwei Lyu
    AAML
    ObjD
ArXivPDFHTML
Abstract

Recent works succeeded to generate adversarial perturbations on the entire image or the object of interests to corrupt CNN based object detectors. In this paper, we focus on exploring the vulnerability of the Single Shot Module (SSM) commonly used in recent object detectors, by adding small perturbations to patches in the background outside the object. The SSM is referred to the Region Proposal Network used in a two-stage object detector or the single-stage object detector itself. The SSM is typically a fully convolutional neural network which generates output in a single forward pass. Due to the excessive convolutions used in SSM, the actual receptive field is larger than the object itself. As such, we propose a novel method to corrupt object detectors by generating imperceptible patches only in the background. Our method can find a few background patches for perturbation, which can effectively decrease true positives and dramatically increase false positives. Efficacy is demonstrated on 5 two-stage object detectors and 8 single-stage object detectors on the MS COCO 2014 dataset. Results indicate that perturbations with small distortions outside the bounding box of object region can still severely damage the detection performance.

View on arXiv
Comments on this paper