ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12335
  4. Cited By
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors

Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors

22 June 2020
Yuling Yao
Aki Vehtari
Andrew Gelman
ArXivPDFHTML

Papers citing "Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors"

39 / 39 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
354
0
0
11 Apr 2025
Proximal Interacting Particle Langevin Algorithms
Proximal Interacting Particle Langevin Algorithms
Paula Cordero Encinar
F. R. Crucinio
O. Deniz Akyildiz
67
5
0
20 Jun 2024
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
67
384
0
29 Apr 2021
Adaptive Path Sampling in Metastable Posterior Distributions
Adaptive Path Sampling in Metastable Posterior Distributions
Yuling Yao
Collin Cademartori
Aki Vehtari
Andrew Gelman
TPM
51
6
0
01 Sep 2020
When are Bayesian model probabilities overconfident?
When are Bayesian model probabilities overconfident?
O. Oelrich
S. Ding
Måns Magnusson
Aki Vehtari
M. Villani
46
17
0
09 Mar 2020
Holes in Bayesian Statistics
Holes in Bayesian Statistics
Andrew Gelman
Yuling Yao
41
27
0
15 Feb 2020
Automatic Reparameterisation of Probabilistic Programs
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
38
28
0
07 Jun 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
57
8
0
23 May 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
37
926
0
19 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
36
19
0
11 Mar 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the
  Posterior Bootstrap
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong
Simon Lyddon
Chris Holmes
128
35
0
08 Feb 2019
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDL
UQCV
57
195
0
12 Oct 2018
Measuring LDA Topic Stability from Clusters of Replicated Runs
Measuring LDA Topic Stability from Clusters of Replicated Runs
Mika Mäntylä
Maëlick Claes
Umar Farooq
15
49
0
24 Aug 2018
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal
  densities?
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities?
Oren Mangoubi
Natesh S. Pillai
Aaron Smith
83
31
0
09 Aug 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
94
138
0
01 May 2018
Yes, but Did It Work?: Evaluating Variational Inference
Yes, but Did It Work?: Evaluating Variational Inference
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
49
136
0
07 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
66
254
0
08 Jan 2018
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave
  Distributions
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
97
106
0
23 Aug 2017
Using stacking to average Bayesian predictive distributions
Using stacking to average Bayesian predictive distributions
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
68
340
0
06 Apr 2017
Deep Exploration via Randomized Value Functions
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
89
304
0
22 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
751
5,798
0
05 Dec 2016
Variational Boosting: Iteratively Refining Posterior Approximations
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
51
125
0
20 Nov 2016
What is Wrong with Topic Modeling? (and How to Fix it Using Search-based
  Software Engineering)
What is Wrong with Topic Modeling? (and How to Fix it Using Search-based Software Engineering)
Amritanshu Agrawal
Wei Fu
Tim Menzies
53
215
0
29 Aug 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
100
716
0
02 Mar 2016
Patterns of Scalable Bayesian Inference
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
88
87
0
16 Feb 2016
A Bayes interpretation of stacking for M-complete and M-open settings
A Bayes interpretation of stacking for M-complete and M-open settings
Tri Le
B. Clarke
157
39
0
16 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
246
4,778
0
04 Jan 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
74
338
0
07 Nov 2015
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
106
4,044
0
16 Jul 2015
Pareto Smoothed Importance Sampling
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
66
242
0
09 Jul 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
750
9,290
0
06 Jun 2015
Speeding Up MCMC by Efficient Data Subsampling
Speeding Up MCMC by Efficient Data Subsampling
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
77
175
0
16 Apr 2014
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
71
169
0
01 Apr 2014
Variable transformation to obtain geometric ergodicity in the
  random-walk Metropolis algorithm
Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
Leif Johnson
C. Geyer
94
52
0
27 Feb 2013
Nonparametric variational inference
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
104
153
0
18 Jun 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
97
479
0
03 Feb 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
162
4,297
0
18 Nov 2011
Gaussian Process Regression with a Student-t Likelihood
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
93
165
0
22 Jun 2011
Philosophy and the practice of Bayesian statistics
Philosophy and the practice of Bayesian statistics
Andrew Gelman
C. Shalizi
77
636
0
19 Jun 2010
1