Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2006.12335
Cited By
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
22 June 2020
Yuling Yao
Aki Vehtari
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors"
39 / 39 papers shown
Title
Improving the evaluation of samplers on multi-modal targets
Louis Grenioux
Maxence Noble
Marylou Gabrié
354
0
0
11 Apr 2025
Proximal Interacting Particle Langevin Algorithms
Paula Cordero Encinar
F. R. Crucinio
O. Deniz Akyildiz
67
5
0
20 Jun 2024
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
67
384
0
29 Apr 2021
Adaptive Path Sampling in Metastable Posterior Distributions
Yuling Yao
Collin Cademartori
Aki Vehtari
Andrew Gelman
TPM
51
6
0
01 Sep 2020
When are Bayesian model probabilities overconfident?
O. Oelrich
S. Ding
Måns Magnusson
Aki Vehtari
M. Villani
46
17
0
09 Mar 2020
Holes in Bayesian Statistics
Andrew Gelman
Yuling Yao
41
27
0
15 Feb 2020
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
38
28
0
07 Jun 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
57
8
0
23 May 2019
Rank-normalization, folding, and localization: An improved
R
^
\widehat{R}
R
for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
37
926
0
19 Mar 2019
Embarrassingly parallel MCMC using deep invertible transformations
Diego Mesquita
P. Blomstedt
Samuel Kaski
36
19
0
11 Mar 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong
Simon Lyddon
Chris Holmes
128
35
0
08 Feb 2019
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDL
UQCV
57
195
0
12 Oct 2018
Measuring LDA Topic Stability from Clusters of Replicated Runs
Mika Mäntylä
Maëlick Claes
Umar Farooq
15
49
0
24 Aug 2018
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities?
Oren Mangoubi
Natesh S. Pillai
Aaron Smith
83
31
0
09 Aug 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
94
138
0
01 May 2018
Yes, but Did It Work?: Evaluating Variational Inference
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
49
136
0
07 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
66
254
0
08 Jan 2018
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
97
106
0
23 Aug 2017
Using stacking to average Bayesian predictive distributions
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
68
340
0
06 Apr 2017
Deep Exploration via Randomized Value Functions
Ian Osband
Benjamin Van Roy
Daniel Russo
Zheng Wen
89
304
0
22 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
751
5,798
0
05 Dec 2016
Variational Boosting: Iteratively Refining Posterior Approximations
Andrew C. Miller
N. Foti
Ryan P. Adams
51
125
0
20 Nov 2016
What is Wrong with Topic Modeling? (and How to Fix it Using Search-based Software Engineering)
Amritanshu Agrawal
Wei Fu
Tim Menzies
53
215
0
29 Aug 2016
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
100
716
0
02 Mar 2016
Patterns of Scalable Bayesian Inference
E. Angelino
Matthew J. Johnson
Ryan P. Adams
88
87
0
16 Feb 2016
A Bayes interpretation of stacking for M-complete and M-open settings
Tri Le
B. Clarke
157
39
0
16 Feb 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
246
4,778
0
04 Jan 2016
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
74
338
0
07 Nov 2015
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
106
4,044
0
16 Jul 2015
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
66
242
0
09 Jul 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
750
9,290
0
06 Jun 2015
Speeding Up MCMC by Efficient Data Subsampling
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
77
175
0
16 Apr 2014
The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors
S. V. D. Pas
B. Kleijn
A. van der Vaart
71
169
0
01 Apr 2014
Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
Leif Johnson
C. Geyer
94
52
0
27 Feb 2013
Nonparametric variational inference
S. Gershman
Matt Hoffman
David M. Blei
BDL
104
153
0
18 Jun 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
97
479
0
03 Feb 2012
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
162
4,297
0
18 Nov 2011
Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki
J. Vanhatalo
Aki Vehtari
GP
93
165
0
22 Jun 2011
Philosophy and the practice of Bayesian statistics
Andrew Gelman
C. Shalizi
77
636
0
19 Jun 2010
1