ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07780
  4. Cited By
Shortcut Learning in Deep Neural Networks

Shortcut Learning in Deep Neural Networks

16 April 2020
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
ArXivPDFHTML

Papers citing "Shortcut Learning in Deep Neural Networks"

32 / 332 papers shown
Title
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU
  Models
Towards Interpreting and Mitigating Shortcut Learning Behavior of NLU Models
Mengnan Du
Varun Manjunatha
R. Jain
Ruchi Deshpande
Franck Dernoncourt
Jiuxiang Gu
Tong Sun
Xia Hu
54
105
0
11 Mar 2021
Size-Invariant Graph Representations for Graph Classification
  Extrapolations
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Pose Discrepancy Spatial Transformer Based Feature Disentangling for
  Partial Aspect Angles SAR Target Recognition
Pose Discrepancy Spatial Transformer Based Feature Disentangling for Partial Aspect Angles SAR Target Recognition
Zaidao Wen
Jiaxiang Liu
Zhunga Liu
Quan Pan
25
1
0
07 Mar 2021
Detecting Spurious Correlations with Sanity Tests for Artificial
  Intelligence Guided Radiology Systems
Detecting Spurious Correlations with Sanity Tests for Artificial Intelligence Guided Radiology Systems
U. Mahmood
Robik Shrestha
D. Bates
L. Mannelli
G. Corrias
Y. Erdi
Christopher Kanan
16
16
0
04 Mar 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
75
980
0
03 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
106
27,682
0
26 Feb 2021
Counterfactual Generative Networks
Counterfactual Generative Networks
Axel Sauer
Andreas Geiger
OOD
BDL
CML
41
123
0
15 Jan 2021
A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots
  Matters
A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
Mengjie Zhao
Yi Zhu
Ehsan Shareghi
Ivan Vulić
Roi Reichart
Anna Korhonen
Hinrich Schütze
32
64
0
31 Dec 2020
Deep Neural Models for color discrimination and color constancy
Deep Neural Models for color discrimination and color constancy
Alban Flachot
A. Akbarinia
Heiko H. Schutt
R. Fleming
Felix Wichmann
K. Gegenfurtner
14
2
0
28 Dec 2020
Addressing Feature Suppression in Unsupervised Visual Representations
Addressing Feature Suppression in Unsupervised Visual Representations
Tianhong Li
Lijie Fan
Yuan. Yuan
Hao He
Yonglong Tian
Rogerio Feris
Piotr Indyk
Dina Katabi
SSL
33
15
0
17 Dec 2020
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
20
80
0
16 Dec 2020
Rotation-Invariant Autoencoders for Signals on Spheres
Rotation-Invariant Autoencoders for Signals on Spheres
Suhas Lohit
Shubhendu Trivedi
MDE
22
5
0
08 Dec 2020
Boosting Contrastive Self-Supervised Learning with False Negative
  Cancellation
Boosting Contrastive Self-Supervised Learning with False Negative Cancellation
T. Huynh
Simon Kornblith
Matthew R. Walter
Michael Maire
M. Khademi
SSL
22
165
0
23 Nov 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural
  Networks
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
48
24
0
19 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
47
257
0
18 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
50
669
0
06 Nov 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
26
13
0
21 Oct 2020
A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and
  Perspectives
A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and Perspectives
Alexander Mathis
Steffen Schneider
Jessy Lauer
Mackenzie W. Mathis
32
165
0
01 Sep 2020
When is invariance useful in an Out-of-Distribution Generalization
  problem ?
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
31
65
0
04 Aug 2020
Seeing eye-to-eye? A comparison of object recognition performance in
  humans and deep convolutional neural networks under image manipulation
Seeing eye-to-eye? A comparison of object recognition performance in humans and deep convolutional neural networks under image manipulation
Leonard E. van Dyck
W. Gruber
19
3
0
13 Jul 2020
Usefulness of interpretability methods to explain deep learning based
  plant stress phenotyping
Usefulness of interpretability methods to explain deep learning based plant stress phenotyping
Koushik Nagasubramanian
Asheesh K. Singh
Arti Singh
S. Sarkar
Baskar Ganapathysubramanian
FAtt
14
16
0
11 Jul 2020
How benign is benign overfitting?
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip H. S. Torr
NoLa
AAML
23
57
0
08 Jul 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
36
458
0
30 Jun 2020
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans
  by measuring error consistency
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Robert Geirhos
Kristof Meding
Felix Wichmann
16
116
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
69
1,666
0
29 Jun 2020
What shapes feature representations? Exploring datasets, architectures,
  and training
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
23
153
0
22 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Are We Modeling the Task or the Annotator? An Investigation of Annotator
  Bias in Natural Language Understanding Datasets
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva
Yoav Goldberg
Jonathan Berant
242
320
0
21 Aug 2019
Hypothesis Only Baselines in Natural Language Inference
Hypothesis Only Baselines in Natural Language Inference
Adam Poliak
Jason Naradowsky
Aparajita Haldar
Rachel Rudinger
Benjamin Van Durme
190
576
0
02 May 2018
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
332
11,684
0
09 Mar 2017
Previous
1234567