ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.16736
11
116

Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency

30 June 2020
Robert Geirhos
Kristof Meding
Felix Wichmann
ArXivPDFHTML
Abstract

A central problem in cognitive science and behavioural neuroscience as well as in machine learning and artificial intelligence research is to ascertain whether two or more decision makers (be they brains or algorithms) use the same strategy. Accuracy alone cannot distinguish between strategies: two systems may achieve similar accuracy with very different strategies. The need to differentiate beyond accuracy is particularly pressing if two systems are near ceiling performance, like Convolutional Neural Networks (CNNs) and humans on visual object recognition. Here we introduce trial-by-trial error consistency, a quantitative analysis for measuring whether two decision making systems systematically make errors on the same inputs. Making consistent errors on a trial-by-trial basis is a necessary condition for similar processing strategies between decision makers. Our analysis is applicable to compare algorithms with algorithms, humans with humans, and algorithms with humans. When applying error consistency to object recognition we obtain three main findings: (1.) Irrespective of architecture, CNNs are remarkably consistent with one another. (2.) The consistency between CNNs and human observers, however, is little above what can be expected by chance alone -- indicating that humans and CNNs are likely implementing very different strategies. (3.) CORnet-S, a recurrent model termed the "current best model of the primate ventral visual stream", fails to capture essential characteristics of human behavioural data and behaves essentially like a standard purely feedforward ResNet-50 in our analysis. Taken together, error consistency analysis suggests that the strategies used by human and machine vision are still very different -- but we envision our general-purpose error consistency analysis to serve as a fruitful tool for quantifying future progress.

View on arXiv
Comments on this paper