ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2004.07780
  4. Cited By
Shortcut Learning in Deep Neural Networks

Shortcut Learning in Deep Neural Networks

16 April 2020
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
ArXivPDFHTML

Papers citing "Shortcut Learning in Deep Neural Networks"

50 / 332 papers shown
Title
Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning
  Research
Reduced, Reused and Recycled: The Life of a Dataset in Machine Learning Research
Bernard Koch
Emily L. Denton
A. Hanna
J. Foster
41
140
0
03 Dec 2021
Editing a classifier by rewriting its prediction rules
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
A. Madry
KELM
177
89
0
02 Dec 2021
Improving mathematical questioning in teacher training
Improving mathematical questioning in teacher training
Debajyoti Datta
Maria Phillips
J. Bywater
Jennifer L. Chiu
G. Watson
Laura E. Barnes
Donald E. Brown
21
0
0
02 Dec 2021
Learning Invariant Representations with Missing Data
Learning Invariant Representations with Missing Data
Mark Goldstein
J. Jacobsen
O. Chau
A. Saporta
A. Puli
Rajesh Ranganath
Andrew C. Miller
OOD
17
5
0
01 Dec 2021
Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic
  benchmarking
Dyna-bAbI: unlocking bAbI's potential with dynamic synthetic benchmarking
Ronen Tamari
Kyle Richardson
Aviad Sar-Shalom
Noam Kahlon
Nelson F. Liu
Reut Tsarfaty
Dafna Shahaf
40
5
0
30 Nov 2021
Towards Principled Disentanglement for Domain Generalization
Towards Principled Disentanglement for Domain Generalization
Hanlin Zhang
Yi-Fan Zhang
Weiyang Liu
Adrian Weller
Bernhard Schölkopf
Eric P. Xing
OOD
36
112
0
27 Nov 2021
Going Grayscale: The Road to Understanding and Improving Unlearnable
  Examples
Going Grayscale: The Road to Understanding and Improving Unlearnable Examples
Zhuoran Liu
Zhengyu Zhao
A. Kolmus
Tijn Berns
Twan van Laarhoven
Tom Heskes
Martha Larson
AAML
35
6
0
25 Nov 2021
Causality-inspired Single-source Domain Generalization for Medical Image
  Segmentation
Causality-inspired Single-source Domain Generalization for Medical Image Segmentation
Cheng Ouyang
C. L. P. Chen
Surui Li
Zeju Li
C. Qin
Wenjia Bai
Daniel Rueckert
OOD
30
155
0
24 Nov 2021
Enhancing Multilingual Language Model with Massive Multilingual
  Knowledge Triples
Enhancing Multilingual Language Model with Massive Multilingual Knowledge Triples
Linlin Liu
Xin Li
Ruidan He
Lidong Bing
Shafiq R. Joty
Luo Si
KELM
35
18
0
22 Nov 2021
Availability Attacks Create Shortcuts
Availability Attacks Create Shortcuts
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
AAML
28
57
0
01 Nov 2021
Algorithmic encoding of protected characteristics in image-based models
  for disease detection
Algorithmic encoding of protected characteristics in image-based models for disease detection
Ben Glocker
Charles Jones
Mélanie Bernhardt
S. Winzeck
29
9
0
27 Oct 2021
Simple data balancing achieves competitive worst-group-accuracy
Simple data balancing achieves competitive worst-group-accuracy
Badr Youbi Idrissi
Martín Arjovsky
Mohammad Pezeshki
David Lopez-Paz
33
173
0
27 Oct 2021
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
Andreas Fürst
Elisabeth Rumetshofer
Johannes Lehner
Viet-Hung Tran
Fei Tang
...
David P. Kreil
Michael K Kopp
G. Klambauer
Angela Bitto-Nemling
Sepp Hochreiter
VLM
CLIP
207
102
0
21 Oct 2021
Identifying and Mitigating Spurious Correlations for Improving
  Robustness in NLP Models
Identifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models
Tianlu Wang
Rohit Sridhar
Diyi Yang
Xuezhi Wang
AAML
120
72
0
14 Oct 2021
Machine Learning Featurizations for AI Hacking of Political Systems
Machine Learning Featurizations for AI Hacking of Political Systems
Nathan Sanders
B. Schneier
20
2
0
08 Oct 2021
Debiasing Methods in Natural Language Understanding Make Bias More
  Accessible
Debiasing Methods in Natural Language Understanding Make Bias More Accessible
Michael J. Mendelson
Yonatan Belinkov
40
23
0
09 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
38
204
0
07 Sep 2021
Survey of Low-Resource Machine Translation
Survey of Low-Resource Machine Translation
Barry Haddow
Rachel Bawden
Antonio Valerio Miceli Barone
Jindvrich Helcl
Alexandra Birch
AIMat
31
147
0
01 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep
  Neural Networks
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your
  Pre-training Effective?
A Scaling Law for Synthetic-to-Real Transfer: How Much Is Your Pre-training Effective?
Hiroaki Mikami
Kenji Fukumizu
Shogo Murai
Shuji Suzuki
Yuta Kikuchi
Taiji Suzuki
S. Maeda
Kohei Hayashi
40
12
0
25 Aug 2021
BiaSwap: Removing dataset bias with bias-tailored swapping augmentation
BiaSwap: Removing dataset bias with bias-tailored swapping augmentation
Eungyeup Kim
Jihyeon Janel Lee
Jaegul Choo
25
86
0
23 Aug 2021
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the
  Presence of Shortcut and Generalization Opportunities
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the Presence of Shortcut and Generalization Opportunities
Elias Eulig
Piyapat Saranrittichai
Chaithanya Kumar Mummadi
K. Rambach
William H. Beluch
Xiahan Shi
Volker Fischer
146
11
0
12 Aug 2021
Making Transformers Solve Compositional Tasks
Making Transformers Solve Compositional Tasks
Santiago Ontañón
Joshua Ainslie
Vaclav Cvicek
Zachary Kenneth Fisher
35
70
0
09 Aug 2021
Understanding the computational demands underlying visual reasoning
Understanding the computational demands underlying visual reasoning
Mohit Vaishnav
Rémi Cadène
A. Alamia
Drew Linsley
Rufin VanRullen
Thomas Serre
GNN
CoGe
37
16
0
08 Aug 2021
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Unsupervised Learning of Debiased Representations with Pseudo-Attributes
Seonguk Seo
Joon-Young Lee
Bohyung Han
FaML
68
48
0
06 Aug 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
33
22
0
02 Aug 2021
Human Perception of Audio Deepfakes
Human Perception of Audio Deepfakes
Nicolas M. Muller
Karla Markert
Konstantin Böttinger
22
49
0
20 Jul 2021
On the Importance of Regularisation & Auxiliary Information in OOD
  Detection
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature
  Restoration
Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration
Cian Eastwood
I. Mason
Christopher K. I. Williams
Bernhard Schölkopf
TTA
22
50
0
12 Jul 2021
Learning Debiased Representation via Disentangled Feature Augmentation
Learning Debiased Representation via Disentangled Feature Augmentation
Jungsoo Lee
Eungyeup Kim
Juyoung Lee
Jihyeon Janel Lee
Jaegul Choo
CML
17
148
0
03 Jul 2021
Fairness via Representation Neutralization
Fairness via Representation Neutralization
Mengnan Du
Subhabrata Mukherjee
Guanchu Wang
Ruixiang Tang
Ahmed Hassan Awadallah
Xia Hu
25
76
0
23 Jun 2021
Can contrastive learning avoid shortcut solutions?
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Algorithmic Bias and Data Bias: Understanding the Relation between
  Distributionally Robust Optimization and Data Curation
Algorithmic Bias and Data Bias: Understanding the Relation between Distributionally Robust Optimization and Data Curation
Agnieszka Słowik
Léon Bottou
FaML
43
19
0
17 Jun 2021
An Evaluation of Self-Supervised Pre-Training for Skin-Lesion Analysis
An Evaluation of Self-Supervised Pre-Training for Skin-Lesion Analysis
Levy G. Chaves
Alceu Bissoto
Eduardo Valle
Sandra Avila
27
15
0
17 Jun 2021
Physion: Evaluating Physical Prediction from Vision in Humans and
  Machines
Physion: Evaluating Physical Prediction from Vision in Humans and Machines
Daniel M. Bear
E. Wang
Damian Mrowca
Felix Binder
Hsiau-Yu Fish Tung
...
Li Fei-Fei
Nancy Kanwisher
J. Tenenbaum
Daniel L. K. Yamins
Judith E. Fan
OOD
58
86
0
15 Jun 2021
Partial success in closing the gap between human and machine vision
Partial success in closing the gap between human and machine vision
Robert Geirhos
Kantharaju Narayanappa
Benjamin Mitzkus
Tizian Thieringer
Matthias Bethge
Felix Wichmann
Wieland Brendel
VLM
AAML
45
221
0
14 Jun 2021
Supervising the Transfer of Reasoning Patterns in VQA
Supervising the Transfer of Reasoning Patterns in VQA
Corentin Kervadec
Christian Wolf
G. Antipov
M. Baccouche
Madiha Nadri Wolf
22
10
0
10 Jun 2021
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
TIMEDIAL: Temporal Commonsense Reasoning in Dialog
Lianhui Qin
Aditya Gupta
Shyam Upadhyay
Luheng He
Yejin Choi
Manaal Faruqui
LRM
28
65
0
08 Jun 2021
OoD-Bench: Quantifying and Understanding Two Dimensions of
  Out-of-Distribution Generalization
OoD-Bench: Quantifying and Understanding Two Dimensions of Out-of-Distribution Generalization
Nanyang Ye
Kaican Li
Haoyue Bai
Runpeng Yu
Lanqing Hong
Fengwei Zhou
Zhenguo Li
Jun Zhu
CML
OOD
40
106
0
07 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution
  Generalization?
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
20
95
0
05 Jun 2021
Towards Robust Classification Model by Counterfactual and Invariant Data
  Generation
Towards Robust Classification Model by Counterfactual and Invariant Data Generation
C. Chang
George Adam
Anna Goldenberg
OOD
CML
21
31
0
02 Jun 2021
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers
  Solutions with Superior OOD Generalization
Evading the Simplicity Bias: Training a Diverse Set of Models Discovers Solutions with Superior OOD Generalization
Damien Teney
Ehsan Abbasnejad
Simon Lucey
Anton Van Den Hengel
23
86
0
12 May 2021
Poisoning the Unlabeled Dataset of Semi-Supervised Learning
Poisoning the Unlabeled Dataset of Semi-Supervised Learning
Nicholas Carlini
AAML
149
68
0
04 May 2021
Do Feature Attribution Methods Correctly Attribute Features?
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
22
132
0
27 Apr 2021
Why AI is Harder Than We Think
Why AI is Harder Than We Think
Melanie Mitchell
36
95
0
26 Apr 2021
Bridging observation, theory and numerical simulation of the ocean using
  Machine Learning
Bridging observation, theory and numerical simulation of the ocean using Machine Learning
Maike Sonnewald
Redouane Lguensat
Daniel C. Jones
P. Dueben
J. Brajard
Venkatramani Balaji
AI4Cl
AI4CE
43
100
0
26 Apr 2021
Causal Learning for Socially Responsible AI
Causal Learning for Socially Responsible AI
Lu Cheng
Ahmadreza Mosallanezhad
Paras Sheth
Huan Liu
71
13
0
25 Apr 2021
Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in
  Visual Question Answering
Beyond Question-Based Biases: Assessing Multimodal Shortcut Learning in Visual Question Answering
Corentin Dancette
Rémi Cadène
Damien Teney
Matthieu Cord
CML
28
75
0
07 Apr 2021
Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems
Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems
Sophia J. Abraham
Zachariah Carmichael
Sreya Banerjee
Rosaura G. VidalMata
Ankit Agrawal
M. N. A. Islam
Walter J. Scheirer
J. Cleland-Huang
26
19
0
28 Mar 2021
Deep Consensus Learning
Deep Consensus Learning
Wei Sun
Tianfu Wu
29
2
0
15 Mar 2021
Previous
1234567
Next