ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00688
  4. Cited By
Out-of-Distribution Generalization via Risk Extrapolation (REx)
v1v2v3v4v5 (latest)

Out-of-Distribution Generalization via Risk Extrapolation (REx)

2 March 2020
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
    OOD
ArXiv (abs)PDFHTML

Papers citing "Out-of-Distribution Generalization via Risk Extrapolation (REx)"

30 / 80 papers shown
Title
Do ImageNet Classifiers Generalize to ImageNet?
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OODSSegVLM
118
1,726
0
13 Feb 2019
On Learning Invariant Representation for Domain Adaptation
On Learning Invariant Representation for Domain Adaptation
Haiying Zhao
Rémi Tachet des Combes
Kun Zhang
Geoffrey J. Gordon
OOD
66
157
0
27 Jan 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
149
141
0
24 Jan 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,483
0
11 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
115
2,672
0
29 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
68
166
0
01 Nov 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSLDRL
335
2,670
0
20 Aug 2018
Recognition in Terra Incognita
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
95
851
0
13 Jul 2018
Representation Learning with Contrastive Predictive Coding
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRLSSL
351
10,349
0
10 Jul 2018
Learning Equations for Extrapolation and Control
Learning Equations for Extrapolation and Control
Subham S. Sahoo
Christoph H. Lampert
Georg Martius
51
234
0
19 Jun 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
133
1,774
0
24 May 2018
Robust Optimization over Multiple Domains
Robust Optimization over Multiple Domains
Qi Qian
Shenghuo Zhu
Jiasheng Tang
Rong Jin
Baigui Sun
Hao Li
OOD
74
71
0
19 May 2018
Empirical Risk Minimization under Fairness Constraints
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
78
445
0
23 Feb 2018
Detecting and Correcting for Label Shift with Black Box Predictors
Detecting and Correcting for Label Shift with Black Box Predictors
Zachary Chase Lipton
Yu Wang
Alex Smola
OOD
71
556
0
12 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
314
8,396
0
04 Jan 2018
DeepMind Control Suite
DeepMind Control Suite
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
...
A. Abdolmaleki
J. Merel
Andrew Lefrancq
Timothy Lillicrap
Martin Riedmiller
ELMLM&RoBDL
140
1,143
0
02 Jan 2018
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
125
864
0
29 Oct 2017
One pixel attack for fooling deep neural networks
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
127
2,327
0
24 Oct 2017
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
124
1,451
0
09 Oct 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILMOOD
310
12,117
0
19 Jun 2017
Adversarial Discriminative Domain Adaptation
Adversarial Discriminative Domain Adaptation
Eric Tzeng
Judy Hoffman
Kate Saenko
Trevor Darrell
GANOOD
267
4,672
0
17 Feb 2017
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
345
4,636
0
10 Nov 2016
Equality of Opportunity in Supervised Learning
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
230
4,329
0
07 Oct 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
166
3,468
0
07 Oct 2016
Natural Neural Networks
Natural Neural Networks
Guillaume Desjardins
Karen Simonyan
Razvan Pascanu
Koray Kavukcuoglu
109
176
0
01 Jul 2015
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GANOOD
383
9,511
0
28 May 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
122
973
0
06 Jan 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,107
0
20 Dec 2014
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
94
612
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OODSSL
269
12,456
0
24 Jun 2012
Previous
12