Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11569
Cited By
Overfitting in adversarially robust deep learning
26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Overfitting in adversarially robust deep learning"
50 / 182 papers shown
Title
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
34
0
0
04 May 2022
Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot Learning
Mathias Lechner
Alexander Amini
Daniela Rus
T. Henzinger
AAML
29
9
0
15 Apr 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
Concept Evolution in Deep Learning Training: A Unified Interpretation Framework and Discoveries
Haekyu Park
Seongmin Lee
Benjamin Hoover
Austin P. Wright
Omar Shaikh
Rahul Duggal
Nilaksh Das
Kevin Li
Judy Hoffman
Duen Horng Chau
24
2
0
30 Mar 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
21
31
0
29 Mar 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
49
71
0
26 Mar 2022
A Manifold View of Adversarial Risk
Wen-jun Zhang
Yikai Zhang
Xiaoling Hu
Mayank Goswami
Chao Chen
Dimitris N. Metaxas
AAML
19
6
0
24 Mar 2022
Self-Ensemble Adversarial Training for Improved Robustness
Hongjun Wang
Yisen Wang
OOD
AAML
13
48
0
18 Mar 2022
Leveraging Adversarial Examples to Quantify Membership Information Leakage
Ganesh Del Grosso
Hamid Jalalzai
Georg Pichler
C. Palamidessi
Pablo Piantanida
MIACV
31
21
0
17 Mar 2022
LAS-AT: Adversarial Training with Learnable Attack Strategy
Xiaojun Jia
Yong Zhang
Baoyuan Wu
Ke Ma
Jue Wang
Xiaochun Cao
AAML
47
131
0
13 Mar 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
29
47
0
11 Mar 2022
Towards Efficient Data-Centric Robust Machine Learning with Noise-based Augmentation
Xiaogeng Liu
Haoyu Wang
Yechao Zhang
Fangzhou Wu
Shengshan Hu
OOD
27
11
0
08 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
Robustness and Accuracy Could Be Reconcilable by (Proper) Definition
Tianyu Pang
Min-Bin Lin
Xiao Yang
Junyi Zhu
Shuicheng Yan
30
119
0
21 Feb 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu (Allen) Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
85
46
0
20 Feb 2022
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Mohammad Khalooei
M. Homayounpour
M. Amirmazlaghani
AAML
25
3
0
05 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
29
4
0
03 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
21
6
0
31 Jan 2022
Can Adversarial Training Be Manipulated By Non-Robust Features?
Lue Tao
Lei Feng
Hongxin Wei
Jinfeng Yi
Sheng-Jun Huang
Songcan Chen
AAML
83
16
0
31 Jan 2022
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
27
15
0
30 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial Robustness?
Xinhsuai Dong
Anh Tuan Luu
Min-Bin Lin
Shuicheng Yan
Hanwang Zhang
SILM
AAML
20
55
0
22 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Stochastic Local Winner-Takes-All Networks Enable Profound Adversarial Robustness
Konstantinos P. Panousis
S. Chatzis
Sergios Theodoridis
BDL
AAML
60
11
0
05 Dec 2021
Improving the Robustness of Reinforcement Learning Policies with
L
1
\mathcal{L}_{1}
L
1
Adaptive Control
Y. Cheng
Penghui Zhao
F. Wang
D. Block
N. Hovakimyan
46
8
0
03 Dec 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
41
56
0
24 Nov 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
270
0
09 Nov 2021
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
40
17
0
09 Nov 2021
LTD: Low Temperature Distillation for Robust Adversarial Training
Erh-Chung Chen
Che-Rung Lee
AAML
24
26
0
03 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
21
7
0
28 Oct 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
293
0
18 Oct 2021
Parameterizing Activation Functions for Adversarial Robustness
Sihui Dai
Saeed Mahloujifar
Prateek Mittal
AAML
42
32
0
11 Oct 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
46
100
0
07 Oct 2021
Label Noise in Adversarial Training: A Novel Perspective to Study Robust Overfitting
Chengyu Dong
Liyuan Liu
Jingbo Shang
NoLa
AAML
56
18
0
07 Oct 2021
Calibrated Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
51
3
0
01 Oct 2021
Adversarial Bone Length Attack on Action Recognition
Nariki Tanaka
Hiroshi Kera
K. Kawamoto
AAML
27
13
0
13 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
13
6
0
02 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
27
15
0
13 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
Imbalanced Adversarial Training with Reweighting
Wentao Wang
Han Xu
Xiaorui Liu
Yaxin Li
B. Thuraisingham
Jiliang Tang
29
16
0
28 Jul 2021
On the Importance of Regularisation & Auxiliary Information in OOD Detection
John Mitros
Brian Mac Namee
21
2
0
15 Jul 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
23
23
0
12 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Brain Multigraph Prediction using Topology-Aware Adversarial Graph Neural Network
Alaa Bessadok
Mohamed Ali Mahjoub
I. Rekik
MedIm
AI4CE
18
16
0
06 May 2021
Previous
1
2
3
4
Next