ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11569
  4. Cited By
Overfitting in adversarially robust deep learning

Overfitting in adversarially robust deep learning

26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
ArXivPDFHTML

Papers citing "Overfitting in adversarially robust deep learning"

32 / 182 papers shown
Title
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard
Pierre-Alain Moëllic
Martial Mermillod
Yannick Bourrier
Romain Cohendet
M. Solinas
M. Reyboz
AAML
24
17
0
26 Apr 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Random Noise Defense Against Query-Based Black-Box Attacks
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
19
59
0
23 Apr 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
33
44
0
19 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
21
76
0
06 Apr 2021
Adversarially Optimized Mixup for Robust Classification
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
30
8
0
22 Mar 2021
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
23
1
0
04 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
269
0
02 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Guided Interpolation for Adversarial Training
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
30
10
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
20
29
0
13 Feb 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic
  Regression
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
16
9
0
05 Feb 2021
Context-Aware Safe Reinforcement Learning for Non-Stationary
  Environments
Context-Aware Safe Reinforcement Learning for Non-Stationary Environments
Baiming Chen
Zuxin Liu
Jiacheng Zhu
Mengdi Xu
Wenhao Ding
Ding Zhao
25
35
0
02 Jan 2021
Guided Adversarial Attack for Evaluating and Enhancing Adversarial
  Defenses
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
22
92
0
30 Nov 2020
Learnable Boundary Guided Adversarial Training
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu-Lin Liu
Liwei Wang
Jiaya Jia
OOD
AAML
24
124
0
23 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural
  Networks
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
49
8
0
03 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
226
0
26 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
47
269
0
05 Oct 2020
Adversarial Training with Stochastic Weight Average
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
21
11
0
21 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
416
0
16 Jul 2020
Boundary thickness and robustness in learning models
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges
  and How to Overcome Them
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial
  Robustness of Neural Networks
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
26
18
0
19 May 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
98
0
20 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
27
396
0
26 Feb 2020
Adversarial Attack Generation Empowered by Min-Max Optimization
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
25
35
0
09 Jun 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
240
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
Previous
1234