Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11569
Cited By
Overfitting in adversarially robust deep learning
26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Overfitting in adversarially robust deep learning"
32 / 182 papers shown
Title
Impact of Spatial Frequency Based Constraints on Adversarial Robustness
Rémi Bernhard
Pierre-Alain Moëllic
Martial Mermillod
Yannick Bourrier
Romain Cohendet
M. Solinas
M. Reyboz
AAML
24
17
0
26 Apr 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
19
59
0
23 Apr 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
33
44
0
19 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
Adversarial Robustness under Long-Tailed Distribution
Tong Wu
Ziwei Liu
Qingqiu Huang
Yu Wang
Dahua Lin
21
76
0
06 Apr 2021
Adversarially Optimized Mixup for Robust Classification
Jason Bunk
Srinjoy Chattopadhyay
B. S. Manjunath
S. Chandrasekaran
AAML
30
8
0
22 Mar 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
41
57
0
08 Mar 2021
Dynamic Efficient Adversarial Training Guided by Gradient Magnitude
Fu Lee Wang
Yanghao Zhang
Yanbin Zheng
Wenjie Ruan
23
1
0
04 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
269
0
02 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
30
10
0
15 Feb 2021
Mixed Nash Equilibria in the Adversarial Examples Game
Laurent Meunier
M. Scetbon
Rafael Pinot
Jamal Atif
Y. Chevaleyre
AAML
20
29
0
13 Feb 2021
Adversarial Training Makes Weight Loss Landscape Sharper in Logistic Regression
Masanori Yamada
Sekitoshi Kanai
Tomoharu Iwata
Tomokatsu Takahashi
Yuki Yamanaka
Hiroshi Takahashi
Atsutoshi Kumagai
AAML
16
9
0
05 Feb 2021
Context-Aware Safe Reinforcement Learning for Non-Stationary Environments
Baiming Chen
Zuxin Liu
Jiacheng Zhu
Mengdi Xu
Wenhao Ding
Ding Zhao
25
35
0
02 Jan 2021
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
22
92
0
30 Nov 2020
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu-Lin Liu
Liwei Wang
Jiaya Jia
OOD
AAML
24
124
0
23 Nov 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
49
8
0
03 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
226
0
26 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
47
269
0
05 Oct 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
21
11
0
21 Sep 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
A. Madry
37
416
0
16 Jul 2020
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
26
18
0
19 May 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
98
0
20 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
27
396
0
26 Feb 2020
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
25
35
0
09 Jun 2019
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
240
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
Previous
1
2
3
4