Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11569
Cited By
Overfitting in adversarially robust deep learning
26 February 2020
Leslie Rice
Eric Wong
Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Overfitting in adversarially robust deep learning"
50 / 182 papers shown
Title
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Hassan Dbouk
Naresh R Shanbhag
AAML
23
7
0
02 Feb 2023
Language-Driven Anchors for Zero-Shot Adversarial Robustness
Xiao-Li Li
Wei Emma Zhang
Yining Liu
Zhan Hu
Bo-Wen Zhang
Xiaolin Hu
34
8
0
30 Jan 2023
Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
Jona Klemenc
Holger Trittenbach
AAML
24
1
0
28 Jan 2023
A Data-Centric Approach for Improving Adversarial Training Through the Lens of Out-of-Distribution Detection
Mohammad Azizmalayeri
Arman Zarei
Alireza Isavand
M. T. Manzuri
M. Rohban
OODD
35
0
0
25 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
Strong inductive biases provably prevent harmless interpolation
Michael Aerni
Marco Milanta
Konstantin Donhauser
Fanny Yang
35
9
0
18 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability
Chengtai Cao
Fan Zhou
Yurou Dai
Jianping Wang
Kunpeng Zhang
AAML
24
28
0
21 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
29
5
0
15 Dec 2022
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
44
59
0
14 Dec 2022
Robust Perception through Equivariance
Chengzhi Mao
Lingyu Zhang
Abhishek Joshi
Junfeng Yang
Hongya Wang
Carl Vondrick
BDL
AAML
29
7
0
12 Dec 2022
Improving Robust Generalization by Direct PAC-Bayesian Bound Minimization
Zifa Wang
Nan Ding
Tomer Levinboim
Xi Chen
Radu Soricut
AAML
35
5
0
22 Nov 2022
On the Robustness of Explanations of Deep Neural Network Models: A Survey
Amlan Jyoti
Karthik Balaji Ganesh
Manoj Gayala
Nandita Lakshmi Tunuguntla
Sandesh Kamath
V. Balasubramanian
XAI
FAtt
AAML
32
4
0
09 Nov 2022
An Adversarial Robustness Perspective on the Topology of Neural Networks
Morgane Goibert
Thomas Ricatte
Elvis Dohmatob
AAML
11
2
0
04 Nov 2022
ARDIR: Improving Robustness using Knowledge Distillation of Internal Representation
Tomokatsu Takahashi
Masanori Yamada
Yuuki Yamanaka
Tomoya Yamashita
20
0
0
01 Nov 2022
Scoring Black-Box Models for Adversarial Robustness
Jian Vora
Pranay Reddy Samala
33
0
0
31 Oct 2022
Adversarial Purification with the Manifold Hypothesis
Zhaoyuan Yang
Zhiwei Xu
Jing Zhang
Richard I. Hartley
Peter Tu
AAML
24
5
0
26 Oct 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
28
4
0
20 Oct 2022
Scaling Adversarial Training to Large Perturbation Bounds
Sravanti Addepalli
Samyak Jain
Gaurang Sriramanan
R. Venkatesh Babu
AAML
33
22
0
18 Oct 2022
When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture
Yi Mo
Dongxian Wu
Yifei Wang
Yiwen Guo
Yisen Wang
ViT
45
52
0
14 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
27
5
0
11 Oct 2022
Towards Out-of-Distribution Adversarial Robustness
Adam Ibrahim
Charles Guille-Escuret
Ioannis Mitliagkas
Irina Rish
David M. Krueger
P. Bashivan
OOD
31
6
0
06 Oct 2022
Strength-Adaptive Adversarial Training
Chaojian Yu
Dawei Zhou
Li Shen
Jun Yu
Bo Han
Biwei Huang
Nannan Wang
Tongliang Liu
OOD
17
2
0
04 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
32
30
0
03 Oct 2022
Automatic Data Augmentation via Invariance-Constrained Learning
Ignacio Hounie
Luiz F. O. Chamon
Alejandro Ribeiro
23
10
0
29 Sep 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
29
2
0
27 Sep 2022
Deep Double Descent via Smooth Interpolation
Matteo Gamba
Erik Englesson
Marten Bjorkman
Hossein Azizpour
63
10
0
21 Sep 2022
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
32
68
0
15 Sep 2022
Saliency Guided Adversarial Training for Learning Generalizable Features with Applications to Medical Imaging Classification System
Xin Li
Yao Qiang
Chengyin Li
Sijia Liu
D. Zhu
OOD
MedIm
31
4
0
09 Sep 2022
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
33
6
0
06 Sep 2022
Neuro-Symbolic Learning: Principles and Applications in Ophthalmology
Muhammad Hassan
Haifei Guan
Aikaterini Melliou
Yuqi Wang
Qianhui Sun
...
Qi Huang
Jiefu Tan
Qinwang Xing
Peiwu Qin
Dongmei Yu
NAI
41
14
0
31 Jul 2022
Membership Inference Attacks via Adversarial Examples
Hamid Jalalzai
Elie Kadoche
Rémi Leluc
Vincent Plassier
AAML
FedML
MIACV
38
7
0
27 Jul 2022
Decoupled Adversarial Contrastive Learning for Self-supervised Adversarial Robustness
Chaoning Zhang
Kang Zhang
Chenshuang Zhang
Axi Niu
Jiu Feng
Chang D. Yoo
In So Kweon
SSL
35
24
0
22 Jul 2022
Towards Efficient Adversarial Training on Vision Transformers
Boxi Wu
Jindong Gu
Zhifeng Li
Deng Cai
Xiaofei He
Wei Liu
ViT
AAML
46
37
0
21 Jul 2022
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
36
21
0
19 Jul 2022
How many perturbations break this model? Evaluating robustness beyond adversarial accuracy
R. Olivier
Bhiksha Raj
AAML
31
5
0
08 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
Landscape Learning for Neural Network Inversion
Ruoshi Liu
Chen-Guang Mao
Purva Tendulkar
Hongya Wang
Carl Vondrick
35
8
0
17 Jun 2022
Analysis and Extensions of Adversarial Training for Video Classification
K. A. Kinfu
René Vidal
AAML
30
13
0
16 Jun 2022
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
Gaoyuan Zhang
Songtao Lu
Yihua Zhang
Xiangyi Chen
Pin-Yu Chen
Quanfu Fan
Lee Martie
L. Horesh
Min-Fong Hong
Sijia Liu
OOD
27
12
0
13 Jun 2022
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
35
133
0
13 Jun 2022
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
45
15
0
07 Jun 2022
Attack-Agnostic Adversarial Detection
Jiaxin Cheng
Mohamed Hussein
J. Billa
Wael AbdAlmageed
AAML
26
0
0
01 Jun 2022
Robust Weight Perturbation for Adversarial Training
Chaojian Yu
Bo Han
Biwei Huang
Li Shen
Shiming Ge
Bo Du
Tongliang Liu
AAML
22
33
0
30 May 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
40
20
0
27 May 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
82
27
0
27 May 2022
Squeeze Training for Adversarial Robustness
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
OOD
39
9
0
23 May 2022
Robust Representation via Dynamic Feature Aggregation
Haozhe Liu
Haoqin Ji
Yuexiang Li
Nanjun He
Haoqian Wu
Feng Liu
Linlin Shen
Yefeng Zheng
AAML
OOD
32
3
0
16 May 2022
Previous
1
2
3
4
Next