Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04486
Cited By
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
11 February 2020
Lénaïc Chizat
Francis R. Bach
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss"
50 / 252 papers shown
Title
Implicit Regularization in Tensor Factorization
Noam Razin
Asaf Maman
Nadav Cohen
33
48
0
19 Feb 2021
On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent
Shahar Azulay
E. Moroshko
Mor Shpigel Nacson
Blake E. Woodworth
Nathan Srebro
Amir Globerson
Daniel Soudry
AI4CE
33
73
0
19 Feb 2021
Bridging the Gap Between Adversarial Robustness and Optimization Bias
Fartash Faghri
Sven Gowal
C. N. Vasconcelos
David J. Fleet
Fabian Pedregosa
Nicolas Le Roux
AAML
195
7
0
17 Feb 2021
Painless step size adaptation for SGD
I. Kulikovskikh
Tarzan Legović
25
0
0
01 Feb 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
41
49
0
24 Jan 2021
Towards Understanding Learning in Neural Networks with Linear Teachers
Roei Sarussi
Alon Brutzkus
Amir Globerson
FedML
MLT
55
20
0
07 Jan 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
8
29
0
31 Dec 2020
Perspective: A Phase Diagram for Deep Learning unifying Jamming, Feature Learning and Lazy Training
Mario Geiger
Leonardo Petrini
M. Wyart
DRL
28
11
0
30 Dec 2020
Mathematical Models of Overparameterized Neural Networks
Cong Fang
Hanze Dong
Tong Zhang
27
22
0
27 Dec 2020
Towards Resolving the Implicit Bias of Gradient Descent for Matrix Factorization: Greedy Low-Rank Learning
Zhiyuan Li
Yuping Luo
Kaifeng Lyu
20
120
0
17 Dec 2020
On the emergence of simplex symmetry in the final and penultimate layers of neural network classifiers
E. Weinan
Stephan Wojtowytsch
28
42
0
10 Dec 2020
Implicit Regularization in ReLU Networks with the Square Loss
Gal Vardi
Ohad Shamir
14
48
0
09 Dec 2020
Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and superiority to kernel methods
Taiji Suzuki
Shunta Akiyama
MLT
21
12
0
06 Dec 2020
Feature Learning in Infinite-Width Neural Networks
Greg Yang
J. E. Hu
MLT
11
147
0
30 Nov 2020
Implicit bias of deep linear networks in the large learning rate phase
Wei Huang
Weitao Du
R. Xu
Chunrui Liu
24
2
0
25 Nov 2020
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
6
6
0
23 Nov 2020
Implicit bias of any algorithm: bounding bias via margin
Elvis Dohmatob
9
0
0
12 Nov 2020
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
8
18
0
04 Nov 2020
Inductive Bias of Gradient Descent for Weight Normalized Smooth Homogeneous Neural Nets
Depen Morwani
H. G. Ramaswamy
9
3
0
24 Oct 2020
Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi
Jianfeng Lu
13
15
0
22 Oct 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
29
11
0
16 Oct 2020
Temperature check: theory and practice for training models with softmax-cross-entropy losses
Atish Agarwala
Jeffrey Pennington
Yann N. Dauphin
S. Schoenholz
UQCV
16
32
0
14 Oct 2020
A Unifying View on Implicit Bias in Training Linear Neural Networks
Chulhee Yun
Shankar Krishnan
H. Mobahi
MLT
13
80
0
06 Oct 2020
A priori estimates for classification problems using neural networks
E. Weinan
Stephan Wojtowytsch
6
8
0
28 Sep 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
Distributional Generalization: A New Kind of Generalization
Preetum Nakkiran
Yamini Bansal
OOD
23
41
0
17 Sep 2020
Deep Networks and the Multiple Manifold Problem
Sam Buchanan
D. Gilboa
John N. Wright
166
39
0
25 Aug 2020
A Dynamical Central Limit Theorem for Shallow Neural Networks
Zhengdao Chen
Grant M. Rotskoff
Joan Bruna
Eric Vanden-Eijnden
18
29
0
21 Aug 2020
A Functional Perspective on Learning Symmetric Functions with Neural Networks
Aaron Zweig
Joan Bruna
11
21
0
16 Aug 2020
Large-time asymptotics in deep learning
Carlos Esteve
Borjan Geshkovski
Dario Pighin
Enrique Zuazua
14
34
0
06 Aug 2020
On the Banach spaces associated with multi-layer ReLU networks: Function representation, approximation theory and gradient descent dynamics
E. Weinan
Stephan Wojtowytsch
MLT
13
53
0
30 Jul 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
55
34
0
22 Jul 2020
Understanding Implicit Regularization in Over-Parameterized Single Index Model
Jianqing Fan
Zhuoran Yang
Mengxin Yu
24
16
0
16 Jul 2020
Global Convergence of Second-order Dynamics in Two-layer Neural Networks
Walid Krichene
Kenneth F. Caluya
A. Halder
MLT
8
5
0
14 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks
Wei Hu
Lechao Xiao
Ben Adlam
Jeffrey Pennington
23
62
0
25 Jun 2020
The Quenching-Activation Behavior of the Gradient Descent Dynamics for Two-layer Neural Network Models
Chao Ma
Lei Wu
E. Weinan
MLT
23
10
0
25 Jun 2020
Implicitly Maximizing Margins with the Hinge Loss
Justin Lizama
13
1
0
25 Jun 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
23
184
0
24 Jun 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
19
181
0
23 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
On Sparsity in Overparametrised Shallow ReLU Networks
Jaume de Dios
Joan Bruna
19
14
0
18 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
18
348
0
13 Jun 2020
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
14
162
0
11 Jun 2020
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
15
44
0
05 Jun 2020
On the Convergence of Gradient Descent Training for Two-layer ReLU-networks in the Mean Field Regime
Stephan Wojtowytsch
MLT
24
49
0
27 May 2020
Can Shallow Neural Networks Beat the Curse of Dimensionality? A mean field training perspective
Stephan Wojtowytsch
E. Weinan
MLT
26
48
0
21 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
Estimating g-Leakage via Machine Learning
Marco Romanelli
K. Chatzikokolakis
C. Palamidessi
Pablo Piantanida
MIACV
12
12
0
09 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Previous
1
2
3
4
5
6
Next