Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04486
Cited By
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
11 February 2020
Lénaïc Chizat
Francis R. Bach
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss"
50 / 252 papers shown
Title
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
30
5
0
11 Oct 2022
The Asymmetric Maximum Margin Bias of Quasi-Homogeneous Neural Networks
D. Kunin
Atsushi Yamamura
Chao Ma
Surya Ganguli
19
20
0
07 Oct 2022
Goal Misgeneralization: Why Correct Specifications Aren't Enough For Correct Goals
Rohin Shah
Vikrant Varma
Ramana Kumar
Mary Phuong
Victoria Krakovna
J. Uesato
Zachary Kenton
37
68
0
04 Oct 2022
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions
Arthur Jacot
36
25
0
29 Sep 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Importance Tempering: Group Robustness for Overparameterized Models
Yiping Lu
Wenlong Ji
Zachary Izzo
Lexing Ying
42
7
0
19 Sep 2022
On Generalization of Decentralized Learning with Separable Data
Hossein Taheri
Christos Thrampoulidis
FedML
27
10
0
15 Sep 2022
Optimal bump functions for shallow ReLU networks: Weight decay, depth separation and the curse of dimensionality
Stephan Wojtowytsch
25
1
0
02 Sep 2022
Incremental Learning in Diagonal Linear Networks
Raphael Berthier
CLL
AI4CE
33
16
0
31 Aug 2022
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
34
72
0
26 Aug 2022
Feature selection with gradient descent on two-layer networks in low-rotation regimes
Matus Telgarsky
MLT
31
16
0
04 Aug 2022
Data-driven initialization of deep learning solvers for Hamilton-Jacobi-Bellman PDEs
Anastasia Borovykh
D. Kalise
Alexis Laignelet
P. Parpas
21
6
0
19 Jul 2022
Normalized gradient flow optimization in the training of ReLU artificial neural networks
Simon Eberle
Arnulf Jentzen
Adrian Riekert
G. Weiss
31
0
0
13 Jul 2022
Towards understanding how momentum improves generalization in deep learning
Samy Jelassi
Yuanzhi Li
ODL
MLT
AI4CE
30
31
0
13 Jul 2022
Synergy and Symmetry in Deep Learning: Interactions between the Data, Model, and Inference Algorithm
Lechao Xiao
Jeffrey Pennington
34
10
0
11 Jul 2022
Implicit Bias of Gradient Descent on Reparametrized Models: On Equivalence to Mirror Descent
Zhiyuan Li
Tianhao Wang
Jason D. Lee
Sanjeev Arora
42
27
0
08 Jul 2022
Automating the Design and Development of Gradient Descent Trained Expert System Networks
Jeremy Straub
29
9
0
04 Jul 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
42
23
0
24 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
33
31
0
20 Jun 2022
How You Start Matters for Generalization
Sameera Ramasinghe
L. MacDonald
M. Farazi
Hemanth Saratchandran
Simon Lucey
ODL
AI4CE
36
6
0
17 Jun 2022
Reconstructing Training Data from Trained Neural Networks
Niv Haim
Gal Vardi
Gilad Yehudai
Ohad Shamir
Michal Irani
40
132
0
15 Jun 2022
The Manifold Hypothesis for Gradient-Based Explanations
Sebastian Bordt
Uddeshya Upadhyay
Zeynep Akata
U. V. Luxburg
FAtt
AAML
28
12
0
15 Jun 2022
Benefits of Additive Noise in Composing Classes with Bounded Capacity
A. F. Pour
H. Ashtiani
33
3
0
14 Jun 2022
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
40
69
0
14 Jun 2022
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
35
133
0
13 Jun 2022
Explicit Regularization in Overparametrized Models via Noise Injection
Antonio Orvieto
Anant Raj
Hans Kersting
Francis R. Bach
10
26
0
09 Jun 2022
What do CNNs Learn in the First Layer and Why? A Linear Systems Perspective
Rhea Chowers
Yair Weiss
33
2
0
06 Jun 2022
Understanding Deep Learning via Decision Boundary
Shiye Lei
Fengxiang He
Yancheng Yuan
Dacheng Tao
19
13
0
03 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
24
58
0
02 Jun 2022
Feature Learning in
L
2
L_{2}
L
2
-regularized DNNs: Attraction/Repulsion and Sparsity
Arthur Jacot
Eugene Golikov
Clément Hongler
Franck Gabriel
MLT
23
17
0
31 May 2022
Excess Risk of Two-Layer ReLU Neural Networks in Teacher-Student Settings and its Superiority to Kernel Methods
Shunta Akiyama
Taiji Suzuki
32
6
0
30 May 2022
The impact of memory on learning sequence-to-sequence tasks
Alireza Seif
S. Loos
Gennaro Tucci
É. Roldán
Sebastian Goldt
23
5
0
29 May 2022
Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
Emmanuel Abbe
Samy Bengio
Elisabetta Cornacchia
Jon M. Kleinberg
Aryo Lotfi
M. Raghu
Chiyuan Zhang
MLT
16
10
0
26 May 2022
On Bridging the Gap between Mean Field and Finite Width in Deep Random Neural Networks with Batch Normalization
Amir Joudaki
Hadi Daneshmand
Francis R. Bach
AI4CE
19
2
0
25 May 2022
A Case of Exponential Convergence Rates for SVM
Vivien A. Cabannes
Stefano Vigogna
19
2
0
20 May 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
59
23
0
18 May 2022
The Mechanism of Prediction Head in Non-contrastive Self-supervised Learning
Zixin Wen
Yuanzhi Li
SSL
27
34
0
12 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
40
121
0
03 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
High-dimensional Asymptotics of Langevin Dynamics in Spiked Matrix Models
Tengyuan Liang
Subhabrata Sen
Pragya Sur
39
7
0
09 Apr 2022
Deep Regression Ensembles
Antoine Didisheim
Bryan Kelly
Semyon Malamud
UQCV
9
4
0
10 Mar 2022
Fast Rates for Noisy Interpolation Require Rethinking the Effects of Inductive Bias
Konstantin Donhauser
Nicolò Ruggeri
Stefan Stojanovic
Fanny Yang
18
21
0
07 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Thinking Outside the Ball: Optimal Learning with Gradient Descent for Generalized Linear Stochastic Convex Optimization
I Zaghloul Amir
Roi Livni
Nathan Srebro
30
6
0
27 Feb 2022
A Note on Machine Learning Approach for Computational Imaging
Bin Dong
26
0
0
24 Feb 2022
Stochastic linear optimization never overfits with quadratically-bounded losses on general data
Matus Telgarsky
11
11
0
14 Feb 2022
Is interpolation benign for random forest regression?
Ludovic Arnould
Claire Boyer
Erwan Scornet
14
6
0
08 Feb 2022
Iterative regularization for low complexity regularizers
C. Molinari
Mathurin Massias
Lorenzo Rosasco
S. Villa
22
5
0
01 Feb 2022
Implicit Regularization Towards Rank Minimization in ReLU Networks
Nadav Timor
Gal Vardi
Ohad Shamir
34
49
0
30 Jan 2022
Limitation of Characterizing Implicit Regularization by Data-independent Functions
Leyang Zhang
Z. Xu
Tao Luo
Yaoyu Zhang
16
0
0
28 Jan 2022
Previous
1
2
3
4
5
6
Next