Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04486
Cited By
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
11 February 2020
Lénaïc Chizat
Francis R. Bach
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss"
50 / 252 papers shown
Title
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
How Infinitely Wide Neural Networks Can Benefit from Multi-task Learning -- an Exact Macroscopic Characterization
Jakob Heiss
Josef Teichmann
Hanna Wutte
MLT
10
2
0
31 Dec 2021
Integral representations of shallow neural network with Rectified Power Unit activation function
Ahmed Abdeljawad
Philipp Grohs
12
10
0
20 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
61
25
0
06 Dec 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
41
13
0
03 Nov 2021
Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias
Kaifeng Lyu
Zhiyuan Li
Runzhe Wang
Sanjeev Arora
MLT
34
69
0
26 Oct 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya Zhang
24
16
0
23 Oct 2021
Actor-critic is implicitly biased towards high entropy optimal policies
Yuzheng Hu
Ziwei Ji
Matus Telgarsky
60
11
0
21 Oct 2021
Gradient Descent on Infinitely Wide Neural Networks: Global Convergence and Generalization
Francis R. Bach
Lénaïc Chizat
MLT
23
23
0
15 Oct 2021
On the Double Descent of Random Features Models Trained with SGD
Fanghui Liu
Johan A. K. Suykens
V. Cevher
MLT
19
10
0
13 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
50
6
0
12 Oct 2021
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
135
83
0
06 Oct 2021
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
50
28
0
06 Oct 2021
VC dimension of partially quantized neural networks in the overparametrized regime
Yutong Wang
Clayton D. Scott
22
1
0
06 Oct 2021
Understanding neural networks with reproducing kernel Banach spaces
Francesca Bartolucci
E. De Vito
Lorenzo Rosasco
Stefano Vigogna
47
50
0
20 Sep 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
Determining Sentencing Recommendations and Patentability Using a Machine Learning Trained Expert System
Logan Brown
Reid Pezewski
Jeremy Straub
AILaw
23
2
0
05 Aug 2021
Fake News and Phishing Detection Using a Machine Learning Trained Expert System
Benjamin Fitzpatrick
X. Liang
Jeremy Straub
32
6
0
04 Aug 2021
Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
Umut Simsekli
Rajiv Khanna
Michael W. Mahoney
22
20
0
02 Aug 2021
Continuous vs. Discrete Optimization of Deep Neural Networks
Omer Elkabetz
Nadav Cohen
68
44
0
14 Jul 2021
Generalization by design: Shortcuts to Generalization in Deep Learning
P. Táborský
Lars Kai Hansen
OOD
AI4CE
15
0
0
05 Jul 2021
A Theoretical Analysis of Fine-tuning with Linear Teachers
Gal Shachaf
Alon Brutzkus
Amir Globerson
34
17
0
04 Jul 2021
Fast Margin Maximization via Dual Acceleration
Ziwei Ji
Nathan Srebro
Matus Telgarsky
15
35
0
01 Jul 2021
Saddle-to-Saddle Dynamics in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity
Arthur Jacot
François Ged
Berfin cSimcsek
Clément Hongler
Franck Gabriel
29
52
0
30 Jun 2021
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Implicit Bias of SGD for Diagonal Linear Networks: a Provable Benefit of Stochasticity
Scott Pesme
Loucas Pillaud-Vivien
Nicolas Flammarion
27
99
0
17 Jun 2021
Understanding Deflation Process in Over-parametrized Tensor Decomposition
Rong Ge
Y. Ren
Xiang Wang
Mo Zhou
8
17
0
11 Jun 2021
On Learnability via Gradient Method for Two-Layer ReLU Neural Networks in Teacher-Student Setting
Shunta Akiyama
Taiji Suzuki
MLT
19
13
0
11 Jun 2021
Early-stopped neural networks are consistent
Ziwei Ji
Justin D. Li
Matus Telgarsky
14
36
0
10 Jun 2021
Separation Results between Fixed-Kernel and Feature-Learning Probability Metrics
Carles Domingo-Enrich
Youssef Mroueh
27
1
0
10 Jun 2021
FEAR: A Simple Lightweight Method to Rank Architectures
Debadeepta Dey
Shital C. Shah
Sébastien Bubeck
OOD
30
4
0
07 Jun 2021
Redundant representations help generalization in wide neural networks
Diego Doimo
Aldo Glielmo
Sebastian Goldt
A. Laio
AI4CE
30
9
0
07 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis
Stephan Wojtowytsch
36
33
0
04 Jun 2021
Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central Path
X. Y. Han
Vardan Papyan
D. Donoho
AAML
30
136
0
03 Jun 2021
The Dynamics of Gradient Descent for Overparametrized Neural Networks
Siddhartha Satpathi
R. Srikant
MLT
AI4CE
16
13
0
13 May 2021
Directional Convergence Analysis under Spherically Symmetric Distribution
Dachao Lin
Zhihua Zhang
MLT
12
0
0
09 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
38
15
0
06 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
29
23
0
05 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
30
30
0
01 May 2021
On Energy-Based Models with Overparametrized Shallow Neural Networks
Carles Domingo-Enrich
A. Bietti
Eric Vanden-Eijnden
Joan Bruna
BDL
33
9
0
15 Apr 2021
Understanding the role of importance weighting for deep learning
Da Xu
Yuting Ye
Chuanwei Ruan
FAtt
39
43
0
28 Mar 2021
Landscape analysis for shallow neural networks: complete classification of critical points for affine target functions
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
24
10
0
19 Mar 2021
Expert System Gradient Descent Style Training: Development of a Defensible Artificial Intelligence Technique
Jeremy Straub
11
27
0
07 Mar 2021
Unintended Effects on Adaptive Learning Rate for Training Neural Network with Output Scale Change
Ryuichi Kanoh
M. Sugiyama
8
0
0
05 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed
Maria Refinetti
Sebastian Goldt
Florent Krzakala
Lenka Zdeborová
22
72
0
23 Feb 2021
Approximation and Learning with Deep Convolutional Models: a Kernel Perspective
A. Bietti
34
29
0
19 Feb 2021
Previous
1
2
3
4
5
6
Next