ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13076
19
2

On Bridging the Gap between Mean Field and Finite Width in Deep Random Neural Networks with Batch Normalization

25 May 2022
Amir Joudaki
Hadi Daneshmand
Francis R. Bach
    AI4CE
ArXivPDFHTML
Abstract

Mean field theory is widely used in the theoretical studies of neural networks. In this paper, we analyze the role of depth in the concentration of mean-field predictions, specifically for deep multilayer perceptron (MLP) with batch normalization (BN) at initialization. By scaling the network width to infinity, it is postulated that the mean-field predictions suffer from layer-wise errors that amplify with depth. We demonstrate that BN stabilizes the distribution of representations that avoids the error propagation of mean-field predictions. This stabilization, which is characterized by a geometric mixing property, allows us to establish concentration bounds for mean field predictions in infinitely-deep neural networks with a finite width.

View on arXiv
Comments on this paper