ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03647
  4. Cited By
Explore, Discover and Learn: Unsupervised Discovery of State-Covering
  Skills

Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills

10 February 2020
Victor Campos
Alexander R. Trott
Caiming Xiong
R. Socher
Xavier Giró-i-Nieto
Jordi Torres
    OffRL
ArXivPDFHTML

Papers citing "Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills"

50 / 58 papers shown
Title
Imagine Beyond! Distributionally Robust Auto-Encoding for State Space Coverage in Online Reinforcement Learning
Nicolas Castanet
Olivier Sigaud
Sylvain Lamprier
OffRL
56
0
0
23 May 2025
Do's and Don'ts: Learning Desirable Skills with Instruction Videos
Do's and Don'ts: Learning Desirable Skills with Instruction Videos
Hyunseung Kim
ByungKun Lee
Hojoon Lee
Dongyoon Hwang
Donghu Kim
Jaegul Choo
92
1
0
01 Jun 2024
Variational Offline Multi-agent Skill Discovery
Variational Offline Multi-agent Skill Discovery
Jiayu Chen
Bhargav Ganguly
Tian-Shing Lan
OffRL
86
3
0
26 May 2024
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
177
10,591
0
17 Feb 2020
Unsupervised Curricula for Visual Meta-Reinforcement Learning
Unsupervised Curricula for Visual Meta-Reinforcement Learning
Allan Jabri
Kyle Hsu
Benjamin Eysenbach
Abhishek Gupta
Sergey Levine
Chelsea Finn
VLM
OOD
SSL
OffRL
33
65
0
09 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
94
11,959
0
13 Nov 2019
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing
  Shaped Rewards
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards
Alexander R. Trott
Stephan Zheng
Caiming Xiong
R. Socher
77
112
0
04 Nov 2019
Solving Rubik's Cube with a Robot Hand
Solving Rubik's Cube with a Robot Hand
OpenAI
Ilge Akkaya
Marcin Andrychowicz
Maciek Chociej
Ma-teusz Litwin
...
Peter Welinder
Lilian Weng
Qiming Yuan
Wojciech Zaremba
Lei Zhang
ODL
58
1,215
0
16 Oct 2019
Dynamics-Aware Unsupervised Discovery of Skills
Dynamics-Aware Unsupervised Discovery of Skills
Archit Sharma
S. Gu
Sergey Levine
Vikash Kumar
Karol Hausman
56
404
0
02 Jul 2019
Efficient Exploration via State Marginal Matching
Efficient Exploration via State Marginal Matching
Lisa Lee
Benjamin Eysenbach
Emilio Parisotto
Eric Xing
Sergey Levine
Ruslan Salakhutdinov
94
242
0
12 Jun 2019
Fast Task Inference with Variational Intrinsic Successor Features
Fast Task Inference with Variational Intrinsic Successor Features
Steven Hansen
Will Dabney
André Barreto
T. Wiele
David Warde-Farley
Volodymyr Mnih
BDL
53
151
0
12 Jun 2019
Data-Efficient Image Recognition with Contrastive Predictive Coding
Data-Efficient Image Recognition with Contrastive Predictive Coding
Olivier J. Hénaff
A. Srinivas
J. Fauw
Ali Razavi
Carl Doersch
S. M. Ali Eslami
Aaron van den Oord
SSL
88
1,422
0
22 May 2019
The MineRL 2019 Competition on Sample Efficient Reinforcement Learning
  using Human Priors
The MineRL 2019 Competition on Sample Efficient Reinforcement Learning using Human Priors
William H. Guss
Cayden R. Codel
Katja Hofmann
Brandon Houghton
Noburu Kuno
...
Diego Perez Liebana
Ruslan Salakhutdinov
Nicholay Topin
Manuela Veloso
Phillip Wang
OffRL
55
66
0
22 Apr 2019
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Vitchyr H. Pong
Murtaza Dalal
Steven Lin
Ashvin Nair
Shikhar Bahl
Sergey Levine
OffRL
SSL
55
273
0
08 Mar 2019
Learning Latent Plans from Play
Learning Latent Plans from Play
Corey Lynch
Mohi Khansari
Ted Xiao
Vikash Kumar
Jonathan Tompson
Sergey Levine
P. Sermanet
SSL
LM&Ro
61
396
0
05 Mar 2019
Competitive Experience Replay
Competitive Experience Replay
Hao Liu
Alexander R. Trott
R. Socher
Caiming Xiong
OffRL
50
52
0
01 Feb 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
61
365
0
30 Jan 2019
Transfer in Deep Reinforcement Learning Using Successor Features and
  Generalised Policy Improvement
Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement
André Barreto
Diana Borsa
John Quan
Tom Schaul
David Silver
Matteo Hessel
D. Mankowitz
Augustin Žídek
Rémi Munos
OffRL
89
162
0
30 Jan 2019
Self-supervised Learning of Image Embedding for Continuous Control
Self-supervised Learning of Image Embedding for Continuous Control
Carlos Florensa
Jonas Degrave
N. Heess
Jost Tobias Springenberg
Martin Riedmiller
SSL
36
53
0
03 Jan 2019
Universal Successor Features Approximators
Universal Successor Features Approximators
Diana Borsa
André Barreto
John Quan
D. Mankowitz
Rémi Munos
H. V. Hasselt
David Silver
Tom Schaul
59
114
0
18 Dec 2018
Provably Efficient Maximum Entropy Exploration
Provably Efficient Maximum Entropy Exploration
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
52
295
0
06 Dec 2018
Unsupervised Control Through Non-Parametric Discriminative Rewards
Unsupervised Control Through Non-Parametric Discriminative Rewards
David Warde-Farley
T. Wiele
Tejas D. Kulkarni
Catalin Ionescu
Steven Hansen
Volodymyr Mnih
DRL
OffRL
SSL
63
176
0
28 Nov 2018
Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri Burda
Harrison Edwards
Amos Storkey
Oleg Klimov
83
1,310
0
30 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
870
93,936
0
11 Oct 2018
Variational Option Discovery Algorithms
Variational Option Discovery Algorithms
Joshua Achiam
Harrison Edwards
Dario Amodei
Pieter Abbeel
DRL
47
177
0
26 Jul 2018
Human-level performance in first-person multiplayer games with
  population-based deep reinforcement learning
Human-level performance in first-person multiplayer games with population-based deep reinforcement learning
Max Jaderberg
Wojciech M. Czarnecki
Iain Dunning
Luke Marris
Guy Lever
...
Joel Z Leibo
David Silver
Demis Hassabis
Koray Kavukcuoglu
T. Graepel
OffRL
63
717
0
03 Jul 2018
Self-Imitation Learning
Self-Imitation Learning
Junhyuk Oh
Yijie Guo
Satinder Singh
Honglak Lee
SSL
45
249
0
14 Jun 2018
Data-Efficient Hierarchical Reinforcement Learning
Data-Efficient Hierarchical Reinforcement Learning
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
OffRL
87
803
0
21 May 2018
Diversity is All You Need: Learning Skills without a Reward Function
Diversity is All You Need: Learning Skills without a Reward Function
Benjamin Eysenbach
Abhishek Gupta
Julian Ibarz
Sergey Levine
60
1,075
0
16 Feb 2018
IMPALA: Scalable Distributed Deep-RL with Importance Weighted
  Actor-Learner Architectures
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
L. Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymyr Mnih
...
Vlad Firoiu
Tim Harley
Iain Dunning
Shane Legg
Koray Kavukcuoglu
140
1,584
0
05 Feb 2018
Improving Exploration in Evolution Strategies for Deep Reinforcement
  Learning via a Population of Novelty-Seeking Agents
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
49
344
0
18 Dec 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDL
SSL
OCL
149
4,928
0
02 Nov 2017
Meta Learning Shared Hierarchies
Meta Learning Shared Hierarchies
Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
47
350
0
26 Oct 2017
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
  Problems with Sparse Rewards
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards
Matej Vecerík
Todd Hester
Jonathan Scholz
Fumin Wang
Olivier Pietquin
Bilal Piot
N. Heess
Thomas Rothörl
Thomas Lampe
Martin Riedmiller
OffRL
51
661
0
27 Jul 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
203
18,685
0
20 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
220
2,307
0
05 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
93
2,416
0
15 May 2017
In-Datacenter Performance Analysis of a Tensor Processing Unit
In-Datacenter Performance Analysis of a Tensor Processing Unit
N. Jouppi
C. Young
Nishant Patil
David Patterson
Gaurav Agrawal
...
Vijay Vasudevan
Richard Walter
Walter Wang
Eric Wilcox
Doe Hyun Yoon
166
4,619
0
16 Apr 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
67
360
0
10 Apr 2017
Multi-Level Discovery of Deep Options
Multi-Level Discovery of Deep Options
Roy Fox
S. Krishnan
Ion Stoica
Ken Goldberg
45
125
0
24 Mar 2017
Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play
Intrinsic Motivation and Automatic Curricula via Asymmetric Self-Play
Sainbayar Sukhbaatar
Zeming Lin
Ilya Kostrikov
Gabriel Synnaeve
Arthur Szlam
Rob Fergus
SSL
46
335
0
15 Mar 2017
Reinforcement Learning with Deep Energy-Based Policies
Reinforcement Learning with Deep Energy-Based Policies
Tuomas Haarnoja
Haoran Tang
Pieter Abbeel
Sergey Levine
55
1,329
0
27 Feb 2017
Variational Intrinsic Control
Variational Intrinsic Control
Karol Gregor
Danilo Jimenez Rezende
Daan Wierstra
DRL
OffRL
44
426
0
22 Nov 2016
Reinforcement Learning with Unsupervised Auxiliary Tasks
Reinforcement Learning with Unsupervised Auxiliary Tasks
Max Jaderberg
Volodymyr Mnih
Wojciech M. Czarnecki
Tom Schaul
Joel Z Leibo
David Silver
Koray Kavukcuoglu
SSL
41
1,225
0
16 Nov 2016
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement
  Learning
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
Haoran Tang
Rein Houthooft
Davis Foote
Adam Stooke
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
OffRL
73
764
0
15 Nov 2016
The Option-Critic Architecture
The Option-Critic Architecture
Pierre-Luc Bacon
J. Harb
Doina Precup
OffRL
44
1,076
0
16 Sep 2016
Successor Features for Transfer in Reinforcement Learning
Successor Features for Transfer in Reinforcement Learning
André Barreto
Will Dabney
Rémi Munos
Jonathan J. Hunt
Tom Schaul
H. V. Hasselt
David Silver
30
566
0
16 Jun 2016
Generative Adversarial Imitation Learning
Generative Adversarial Imitation Learning
Jonathan Ho
Stefano Ermon
GAN
111
3,084
0
10 Jun 2016
Unifying Count-Based Exploration and Intrinsic Motivation
Unifying Count-Based Exploration and Intrinsic Motivation
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
156
1,465
0
06 Jun 2016
Variational Information Maximisation for Intrinsically Motivated
  Reinforcement Learning
Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning
S. Mohamed
Danilo Jimenez Rezende
DRL
SSL
45
400
0
29 Sep 2015
12
Next