ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.09767
20
349

Meta Learning Shared Hierarchies

26 October 2017
Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
ArXivPDFHTML
Abstract

We develop a metalearning approach for learning hierarchically structured policies, improving sample efficiency on unseen tasks through the use of shared primitives---policies that are executed for large numbers of timesteps. Specifically, a set of primitives are shared within a distribution of tasks, and are switched between by task-specific policies. We provide a concrete metric for measuring the strength of such hierarchies, leading to an optimization problem for quickly reaching high reward on unseen tasks. We then present an algorithm to solve this problem end-to-end through the use of any off-the-shelf reinforcement learning method, by repeatedly sampling new tasks and resetting task-specific policies. We successfully discover meaningful motor primitives for the directional movement of four-legged robots, solely by interacting with distributions of mazes. We also demonstrate the transferability of primitives to solve long-timescale sparse-reward obstacle courses, and we enable 3D humanoid robots to robustly walk and crawl with the same policy.

View on arXiv
Comments on this paper