ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10702
  4. Cited By
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse

The Usual Suspects? Reassessing Blame for VAE Posterior Collapse

23 December 2019
Bin Dai
Ziyu Wang
David Wipf
    DRL
ArXivPDFHTML

Papers citing "The Usual Suspects? Reassessing Blame for VAE Posterior Collapse"

42 / 42 papers shown
Title
On the Convergence Analysis of Over-Parameterized Variational
  Autoencoders: A Neural Tangent Kernel Perspective
On the Convergence Analysis of Over-Parameterized Variational Autoencoders: A Neural Tangent Kernel Perspective
Li Wang
Wei Huang
DRL
26
0
0
09 Sep 2024
Decentralized Collaborative Learning Framework with External Privacy
  Leakage Analysis
Decentralized Collaborative Learning Framework with External Privacy Leakage Analysis
Tsuyoshi Idé
Dzung Phan
Rudy Raymond
FedML
36
0
0
01 Apr 2024
Bayesian Transfer Learning
Bayesian Transfer Learning
Piotr M. Suder
Jason Xu
David B. Dunson
36
5
0
20 Dec 2023
Matching aggregate posteriors in the variational autoencoder
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Motion-DVAE: Unsupervised learning for fast human motion denoising
Motion-DVAE: Unsupervised learning for fast human motion denoising
Guénolé Fiche
Simon Leglaive
Xavier Alameda-Pineda
Renaud Séguier
VGen
DiffM
3DH
36
2
0
09 Jun 2023
Unscented Autoencoder
Unscented Autoencoder
Faris Janjos
Lars Rosenbaum
Maxim Dolgov
J. Marius Zöllner
21
2
0
08 Jun 2023
Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in
  Conditional and Hierarchical Variational Autoencoders
Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders
Hien Dang
Tho Tran
T. Nguyen
Nhat Ho
CML
DRL
23
3
0
08 Jun 2023
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Parameter Estimation in DAGs from Incomplete Data via Optimal Transport
Vy Vo
Trung Le
L. Vuong
He Zhao
Edwin V. Bonilla
Dinh Q. Phung
OT
26
4
0
25 May 2023
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the
  Decoder Network
Controlling Posterior Collapse by an Inverse Lipschitz Constraint on the Decoder Network
Yuri Kinoshita
Kenta Oono
Kenji Fukumizu
Yuichi Yoshida
S. Maeda
DRL
BDL
20
2
0
25 Apr 2023
How good are variational autoencoders at transfer learning?
How good are variational autoencoders at transfer learning?
Lisa Bonheme
M. Grzes
OOD
DRL
23
2
0
21 Apr 2023
Explaining text classifiers through progressive neighborhood
  approximation with realistic samples
Explaining text classifiers through progressive neighborhood approximation with realistic samples
Yi Cai
Arthur Zimek
Eirini Ntoutsi
Gerhard Wunder
AI4TS
22
0
0
11 Feb 2023
Posterior Collapse and Latent Variable Non-identifiability
Posterior Collapse and Latent Variable Non-identifiability
Yixin Wang
David M. Blei
John P. Cunningham
CML
DRL
83
72
0
02 Jan 2023
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Multi-Rate VAE: Train Once, Get the Full Rate-Distortion Curve
Juhan Bae
Michael Ruogu Zhang
Michael Ruan
Eric Wang
S. Hasegawa
Jimmy Ba
Roger C. Grosse
DRL
21
17
0
07 Dec 2022
CHIMLE: Conditional Hierarchical IMLE for Multimodal Conditional Image
  Synthesis
CHIMLE: Conditional Hierarchical IMLE for Multimodal Conditional Image Synthesis
Shichong Peng
Alireza Moazeni
Ke Li
DiffM
33
2
0
25 Nov 2022
Break The Spell Of Total Correlation In betaTCVAE
Break The Spell Of Total Correlation In betaTCVAE
Zihao Chen
Qiang Li
Bing Guo
CML
DRL
26
1
0
17 Oct 2022
FONDUE: an algorithm to find the optimal dimensionality of the latent
  representations of variational autoencoders
FONDUE: an algorithm to find the optimal dimensionality of the latent representations of variational autoencoders
Lisa Bonheme
M. Grzes
DRL
36
6
0
26 Sep 2022
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Ðorðe Miladinovic
Kumar Shridhar
Kushal Kumar Jain
Max B. Paulus
J. M. Buhmann
Mrinmaya Sachan
Carl Allen
DRL
23
5
0
26 Sep 2022
Gromov-Wasserstein Autoencoders
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
Group Activity Recognition in Basketball Tracking Data -- Neural
  Embeddings in Team Sports (NETS)
Group Activity Recognition in Basketball Tracking Data -- Neural Embeddings in Team Sports (NETS)
Sandro Hauri
Slobodan Vučetić
21
8
0
31 Aug 2022
ReFRS: Resource-efficient Federated Recommender System for Dynamic and
  Diversified User Preferences
ReFRS: Resource-efficient Federated Recommender System for Dynamic and Diversified User Preferences
Mubashir Imran
Hongzhi Yin
Tong Chen
Nguyen Quoc Viet Hung
Alexander Zhou
Kai Zheng
34
69
0
28 Jul 2022
Identifiability of deep generative models without auxiliary information
Identifiability of deep generative models without auxiliary information
Bohdan Kivva
Goutham Rajendran
Pradeep Ravikumar
Bryon Aragam
DRL
26
49
0
20 Jun 2022
Variational Meta Reinforcement Learning for Social Robotics
Variational Meta Reinforcement Learning for Social Robotics
Anand Ballou
Xavier Alameda-Pineda
Chris Reinke
OffRL
11
13
0
07 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
Top-down inference in an early visual cortex inspired hierarchical
  Variational Autoencoder
Top-down inference in an early visual cortex inspired hierarchical Variational Autoencoder
F. Csikor
B. Meszéna
Bence Szabó
Gergő Orbán
BDL
DRL
27
5
0
01 Jun 2022
How do Variational Autoencoders Learn? Insights from Representational
  Similarity
How do Variational Autoencoders Learn? Insights from Representational Similarity
Lisa Bonheme
M. Grzes
CoGe
SSL
DRL
35
10
0
17 May 2022
Posterior Collapse of a Linear Latent Variable Model
Posterior Collapse of a Linear Latent Variable Model
Zihao Wang
Liu Ziyin
BDL
33
21
0
09 May 2022
Camera-Conditioned Stable Feature Generation for Isolated Camera
  Supervised Person Re-IDentification
Camera-Conditioned Stable Feature Generation for Isolated Camera Supervised Person Re-IDentification
Chaoyang Wu
Wenhang Ge
Ancong Wu
Xiaobin Chang
44
21
0
29 Mar 2022
Competency Assessment for Autonomous Agents using Deep Generative Models
Competency Assessment for Autonomous Agents using Deep Generative Models
Aastha Acharya
Rebecca L. Russell
Nisar R. Ahmed
32
10
0
23 Mar 2022
The Transitive Information Theory and its Application to Deep Generative
  Models
The Transitive Information Theory and its Application to Deep Generative Models
Trung Ngo Trong
Najwa Laabid
Ville Hautamaki
M. Heinäniemi
DRL
46
0
0
09 Mar 2022
Covariate-informed Representation Learning to Prevent Posterior Collapse
  of iVAE
Covariate-informed Representation Learning to Prevent Posterior Collapse of iVAE
Young-geun Kim
Yong-Jin Liu
Xue Wei
OOD
CML
41
1
0
09 Feb 2022
Variational autoencoders in the presence of low-dimensional data:
  landscape and implicit bias
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
36
12
0
13 Dec 2021
XPROAX-Local explanations for text classification with progressive
  neighborhood approximation
XPROAX-Local explanations for text classification with progressive neighborhood approximation
Yi Cai
Arthur Zimek
Eirini Ntoutsi
25
5
0
30 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational Autoencoders
Lisa Bonheme
M. Grzes
DRL
19
6
0
26 Sep 2021
Neighbor Embedding Variational Autoencoder
Neighbor Embedding Variational Autoencoder
Renfei Tu
Yang Liu
Yongzeng Xue
Cheng Wang
Maozu Guo
BDL
DRL
15
0
0
21 Mar 2021
VAE Approximation Error: ELBO and Exponential Families
VAE Approximation Error: ELBO and Exponential Families
Alexander Shekhovtsov
D. Schlesinger
B. Flach
DRL
35
15
0
18 Feb 2021
Preventing Oversmoothing in VAE via Generalized Variance
  Parameterization
Preventing Oversmoothing in VAE via Generalized Variance Parameterization
Yuhta Takida
Wei-Hsiang Liao
Chieh-Hsin Lai
Toshimitsu Uesaka
Shusuke Takahashi
Yuki Mitsufuji
DRL
49
13
0
17 Feb 2021
A Critical Look at the Consistency of Causal Estimation With Deep Latent
  Variable Models
A Critical Look at the Consistency of Causal Estimation With Deep Latent Variable Models
Severi Rissanen
Pekka Marttinen
CML
25
26
0
12 Feb 2021
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
35
34
0
03 Dec 2020
Mutual Information Constraints for Monte-Carlo Objectives
Mutual Information Constraints for Monte-Carlo Objectives
Gábor Melis
András Gyorgy
Phil Blunsom
21
1
0
01 Dec 2020
GENs: Generative Encoding Networks
GENs: Generative Encoding Networks
Surojit Saha
Shireen Y. Elhabian
Ross T. Whitaker
GAN
18
8
0
28 Oct 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
A Generalised Linear Model Framework for $β$-Variational
  Autoencoders based on Exponential Dispersion Families
A Generalised Linear Model Framework for βββ-Variational Autoencoders based on Exponential Dispersion Families
Robert Sicks
R. Korn
Stefanie Schwaar
15
12
0
11 Jun 2020
1