ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.04009
25
21

Posterior Collapse of a Linear Latent Variable Model

9 May 2022
Zihao Wang
Liu Ziyin
    BDL
ArXivPDFHTML
Abstract

This work identifies the existence and cause of a type of posterior collapse that frequently occurs in the Bayesian deep learning practice. For a general linear latent variable model that includes linear variational autoencoders as a special case, we precisely identify the nature of posterior collapse to be the competition between the likelihood and the regularization of the mean due to the prior. Our result suggests that posterior collapse may be related to neural collapse and dimensional collapse and could be a subclass of a general problem of learning for deeper architectures.

View on arXiv
Comments on this paper