ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02590
  4. Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation

Optimizing Millions of Hyperparameters by Implicit Differentiation

6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
    DD
ArXivPDFHTML

Papers citing "Optimizing Millions of Hyperparameters by Implicit Differentiation"

50 / 271 papers shown
Title
Towards Gradient-based Bilevel Optimization with Non-convex Followers
  and Beyond
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
Risheng Liu
Yaohua Liu
Shangzhi Zeng
Jin Zhang
30
80
0
01 Oct 2021
Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear
  Filters and Equilibrium Propagation
Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation
Sangwoo Park
Osvaldo Simeone
47
8
0
01 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Should We Be Pre-training? An Argument for End-task Aware Training as an
  Alternative
Should We Be Pre-training? An Argument for End-task Aware Training as an Alternative
Lucio Dery
Paul Michel
Ameet Talwalkar
Graham Neubig
CLL
36
35
0
15 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Is Attention Better Than Matrix Decomposition?
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
62
138
0
09 Sep 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge
  regression
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
27
12
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Meta-learning PINN loss functions
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
49
97
0
12 Jul 2021
iDARTS: Differentiable Architecture Search with Stochastic Implicit
  Gradients
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
26
68
0
21 Jun 2021
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter
  Optimization
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
31
20
0
19 Jun 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
45
21
0
17 Jun 2021
A Value-Function-based Interior-point Method for Non-convex Bi-level
  Optimization
A Value-Function-based Interior-point Method for Non-convex Bi-level Optimization
Risheng Liu
Xuan Liu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
15
79
0
15 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
26
28
0
14 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
51
82
0
11 Jun 2021
Stability and Generalization of Bilevel Programming in Hyperparameter
  Optimization
Stability and Generalization of Bilevel Programming in Hyperparameter Optimization
Fan Bao
Guoqiang Wu
Chongxuan Li
Jun Zhu
Bo Zhang
30
30
0
08 Jun 2021
Deep Proxy Causal Learning and its Application to Confounded Bandit
  Policy Evaluation
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
CML
23
35
0
07 Jun 2021
Control-Oriented Model-Based Reinforcement Learning with Implicit
  Differentiation
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
Evgenii Nikishin
Romina Abachi
Rishabh Agarwal
Pierre-Luc Bacon
OffRL
52
35
0
06 Jun 2021
Neural Auto-Curricula
Neural Auto-Curricula
Xidong Feng
Oliver Slumbers
Bo Liu
Bo Liu
Stephen Marcus McAleer
Ying Wen
Jun Wang
Yaodong Yang
35
1
0
04 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Fair Machine Learning under Limited Demographically Labeled Data
Fair Machine Learning under Limited Demographically Labeled Data
Mustafa Safa Ozdayi
Murat Kantarcioglu
Rishabh K. Iyer
FaML
23
3
0
03 Jun 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level
  optimization and implicit models
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
37
28
0
01 Jun 2021
Efficient and Modular Implicit Differentiation
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
27
220
0
31 May 2021
A Gradient Method for Multilevel Optimization
A Gradient Method for Multilevel Optimization
Ryo Sato
Mirai Tanaka
Akiko Takeda
20
18
0
28 May 2021
AutoSampling: Search for Effective Data Sampling Schedules
AutoSampling: Search for Effective Data Sampling Schedules
Ming Sun
Hao Dou
Baopu Li
Lei Cui
Junjie Yan
Wanli Ouyang
42
6
0
28 May 2021
Optimization Induced Equilibrium Networks
Optimization Induced Equilibrium Networks
Xingyu Xie
Qiuhao Wang
Zenan Ling
Xia Li
Yisen Wang
Guangcan Liu
Zhouchen Lin
13
9
0
27 May 2021
Bilevel Programs Meet Deep Learning: A Unifying View on Inference
  Learning Methods
Bilevel Programs Meet Deep Learning: A Unifying View on Inference Learning Methods
Christopher Zach
FedML
16
5
0
15 May 2021
Implicit differentiation for fast hyperparameter selection in non-smooth
  convex learning
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
53
26
0
04 May 2021
Generalization Guarantees for Neural Architecture Search with
  Train-Validation Split
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
A contrastive rule for meta-learning
A contrastive rule for meta-learning
Nicolas Zucchet
Simon Schug
J. Oswald
Dominic Zhao
João Sacramento
MLT
33
19
0
04 Apr 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable
  Probabilistic Implicit Differentiation
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation
Denis A. Gudovskiy
Luca Rigazio
Shun Ishizaka
Kazuki Kozuka
Sotaro Tsukizawa
NoLa
38
21
0
10 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under
  Overparameterization
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
31
93
0
02 Mar 2021
Complex Momentum for Optimization in Games
Complex Momentum for Optimization in Games
Jonathan Lorraine
David Acuna
Paul Vicol
David Duvenaud
20
9
0
16 Feb 2021
A General Descent Aggregation Framework for Gradient-based Bi-level
  Optimization
A General Descent Aggregation Framework for Gradient-based Bi-level Optimization
Risheng Liu
Pan Mu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
AI4CE
33
36
0
16 Feb 2021
HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep
  Neural Networks
HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks
Yuanyuan Chen
Boyang Albert Li
Han Yu
Pengcheng Wu
Chunyan Miao
TDI
27
39
0
04 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a
  Unified Perspective: A Survey and Beyond
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
62
223
0
27 Jan 2021
Cost-Efficient Online Hyperparameter Optimization
Cost-Efficient Online Hyperparameter Optimization
Jingkang Wang
Mengye Ren
Ilija Bogunovic
Yuwen Xiong
R. Urtasun
47
2
0
17 Jan 2021
AutonoML: Towards an Integrated Framework for Autonomous Machine
  Learning
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
30
16
0
23 Dec 2020
Convergence Properties of Stochastic Hypergradients
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
24
26
0
13 Nov 2020
Teaching with Commentaries
Teaching with Commentaries
Aniruddh Raghu
M. Raghu
Simon Kornblith
David Duvenaud
Geoffrey E. Hinton
27
24
0
05 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
30
249
0
15 Oct 2020
How Out-of-Distribution Data Hurts Semi-Supervised Learning
How Out-of-Distribution Data Hurts Semi-Supervised Learning
Xujiang Zhao
Killamsetty Krishnateja
Rishabh K. Iyer
Feng Chen
14
3
0
07 Oct 2020
Gradient Descent-Ascent Provably Converges to Strict Local Minmax
  Equilibria with a Finite Timescale Separation
Gradient Descent-Ascent Provably Converges to Strict Local Minmax Equilibria with a Finite Timescale Separation
Tanner Fiez
Lillian J. Ratliff
22
16
0
30 Sep 2020
SecDD: Efficient and Secure Method for Remotely Training Neural Networks
SecDD: Efficient and Secure Method for Remotely Training Neural Networks
Ilia Sucholutsky
Matthias Schonlau
16
15
0
19 Sep 2020
From Federated Learning to Federated Neural Architecture Search: A
  Survey
From Federated Learning to Federated Neural Architecture Search: A Survey
Hangyu Zhu
Haoyu Zhang
Yaochu Jin
FedML
OOD
AI4CE
14
148
0
12 Sep 2020
Approximate Cross-Validation with Low-Rank Data in High Dimensions
Approximate Cross-Validation with Low-Rank Data in High Dimensions
William T. Stephenson
Madeleine Udell
Tamara Broderick
15
2
0
24 Aug 2020
Efficient hyperparameter optimization by way of PAC-Bayes bound
  minimization
Efficient hyperparameter optimization by way of PAC-Bayes bound minimization
John J. Cherian
Andrew G. Taube
R. McGibbon
Panagiotis Angelikopoulos
Guy Blanc
M. Snarski
D. D. Richman
J. L. Klepeis
D. Shaw
12
6
0
14 Aug 2020
Previous
123456
Next