Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02590
Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation
6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing Millions of Hyperparameters by Implicit Differentiation"
50 / 271 papers shown
Title
Towards Gradient-based Bilevel Optimization with Non-convex Followers and Beyond
Risheng Liu
Yaohua Liu
Shangzhi Zeng
Jin Zhang
30
80
0
01 Oct 2021
Predicting Flat-Fading Channels via Meta-Learned Closed-Form Linear Filters and Equilibrium Propagation
Sangwoo Park
Osvaldo Simeone
47
8
0
01 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Should We Be Pre-training? An Argument for End-task Aware Training as an Alternative
Lucio Dery
Paul Michel
Ameet Talwalkar
Graham Neubig
CLL
36
35
0
15 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
62
10
0
13 Sep 2021
Is Attention Better Than Matrix Decomposition?
Zhengyang Geng
Meng-Hao Guo
Hongxu Chen
Xia Li
Ke Wei
Zhouchen Lin
62
138
0
09 Sep 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
27
12
0
19 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Meta-learning PINN loss functions
Apostolos F. Psaros
Kenji Kawaguchi
George Karniadakis
PINN
49
97
0
12 Jul 2021
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients
Miao Zhang
Steven W. Su
Shirui Pan
Xiaojun Chang
Ehsan Abbasnejad
Reza Haffari
26
68
0
21 Jun 2021
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
31
20
0
19 Jun 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
45
21
0
17 Jun 2021
A Value-Function-based Interior-point Method for Non-convex Bi-level Optimization
Risheng Liu
Xuan Liu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
15
79
0
15 Jun 2021
Last Layer Marginal Likelihood for Invariance Learning
Pola Schwobel
Martin Jørgensen
Sebastian W. Ober
Mark van der Wilk
BDL
UQCV
26
28
0
14 Jun 2021
Proximal Optimal Transport Modeling of Population Dynamics
Charlotte Bunne
Laetitia Meng-Papaxanthos
Andreas Krause
Marco Cuturi
OT
51
82
0
11 Jun 2021
Stability and Generalization of Bilevel Programming in Hyperparameter Optimization
Fan Bao
Guoqiang Wu
Chongxuan Li
Jun Zhu
Bo Zhang
30
30
0
08 Jun 2021
Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation
Liyuan Xu
Heishiro Kanagawa
Arthur Gretton
CML
23
35
0
07 Jun 2021
Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation
Evgenii Nikishin
Romina Abachi
Rishabh Agarwal
Pierre-Luc Bacon
OffRL
52
35
0
06 Jun 2021
Neural Auto-Curricula
Xidong Feng
Oliver Slumbers
Bo Liu
Bo Liu
Stephen Marcus McAleer
Ying Wen
Jun Wang
Yaodong Yang
35
1
0
04 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Fair Machine Learning under Limited Demographically Labeled Data
Mustafa Safa Ozdayi
Murat Kantarcioglu
Rishabh K. Iyer
FaML
23
3
0
03 Jun 2021
SHINE: SHaring the INverse Estimate from the forward pass for bi-level optimization and implicit models
Zaccharie Ramzi
Florian Mannel
Shaojie Bai
Jean-Luc Starck
P. Ciuciu
Thomas Moreau
37
28
0
01 Jun 2021
Efficient and Modular Implicit Differentiation
Mathieu Blondel
Quentin Berthet
Marco Cuturi
Roy Frostig
Stephan Hoyer
Felipe Llinares-López
Fabian Pedregosa
Jean-Philippe Vert
27
220
0
31 May 2021
A Gradient Method for Multilevel Optimization
Ryo Sato
Mirai Tanaka
Akiko Takeda
20
18
0
28 May 2021
AutoSampling: Search for Effective Data Sampling Schedules
Ming Sun
Hao Dou
Baopu Li
Lei Cui
Junjie Yan
Wanli Ouyang
42
6
0
28 May 2021
Optimization Induced Equilibrium Networks
Xingyu Xie
Qiuhao Wang
Zenan Ling
Xia Li
Yisen Wang
Guangcan Liu
Zhouchen Lin
13
9
0
27 May 2021
Bilevel Programs Meet Deep Learning: A Unifying View on Inference Learning Methods
Christopher Zach
FedML
16
5
0
15 May 2021
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
53
26
0
04 May 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
A contrastive rule for meta-learning
Nicolas Zucchet
Simon Schug
J. Oswald
Dominic Zhao
João Sacramento
MLT
33
19
0
04 Apr 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation
Denis A. Gudovskiy
Luca Rigazio
Shun Ishizaka
Kazuki Kozuka
Sotaro Tsukizawa
NoLa
38
21
0
10 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
31
93
0
02 Mar 2021
Complex Momentum for Optimization in Games
Jonathan Lorraine
David Acuna
Paul Vicol
David Duvenaud
20
9
0
16 Feb 2021
A General Descent Aggregation Framework for Gradient-based Bi-level Optimization
Risheng Liu
Pan Mu
Xiaoming Yuan
Shangzhi Zeng
Jin Zhang
AI4CE
33
36
0
16 Feb 2021
HYDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks
Yuanyuan Chen
Boyang Albert Li
Han Yu
Pengcheng Wu
Chunyan Miao
TDI
27
39
0
04 Feb 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
62
223
0
27 Jan 2021
Cost-Efficient Online Hyperparameter Optimization
Jingkang Wang
Mengye Ren
Ilija Bogunovic
Yuwen Xiong
R. Urtasun
47
2
0
17 Jan 2021
AutonoML: Towards an Integrated Framework for Autonomous Machine Learning
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
30
16
0
23 Dec 2020
Convergence Properties of Stochastic Hypergradients
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
24
26
0
13 Nov 2020
Teaching with Commentaries
Aniruddh Raghu
M. Raghu
Simon Kornblith
David Duvenaud
Geoffrey E. Hinton
27
24
0
05 Nov 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
240
0
30 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
30
249
0
15 Oct 2020
How Out-of-Distribution Data Hurts Semi-Supervised Learning
Xujiang Zhao
Killamsetty Krishnateja
Rishabh K. Iyer
Feng Chen
14
3
0
07 Oct 2020
Gradient Descent-Ascent Provably Converges to Strict Local Minmax Equilibria with a Finite Timescale Separation
Tanner Fiez
Lillian J. Ratliff
22
16
0
30 Sep 2020
SecDD: Efficient and Secure Method for Remotely Training Neural Networks
Ilia Sucholutsky
Matthias Schonlau
16
15
0
19 Sep 2020
From Federated Learning to Federated Neural Architecture Search: A Survey
Hangyu Zhu
Haoyu Zhang
Yaochu Jin
FedML
OOD
AI4CE
14
148
0
12 Sep 2020
Approximate Cross-Validation with Low-Rank Data in High Dimensions
William T. Stephenson
Madeleine Udell
Tamara Broderick
15
2
0
24 Aug 2020
Efficient hyperparameter optimization by way of PAC-Bayes bound minimization
John J. Cherian
Andrew G. Taube
R. McGibbon
Panagiotis Angelikopoulos
Guy Blanc
M. Snarski
D. D. Richman
J. L. Klepeis
D. Shaw
12
6
0
14 Aug 2020
Previous
1
2
3
4
5
6
Next