ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09613
35
21

Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error

17 June 2021
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
    UQCV
    OOD
ArXivPDFHTML
Abstract

Calibration of neural networks is a topical problem that is becoming more and more important as neural networks increasingly underpin real-world applications. The problem is especially noticeable when using modern neural networks, for which there is a significant difference between the confidence of the model and the probability of correct prediction. Various strategies have been proposed to improve calibration, yet accurate calibration remains challenging. We propose a novel framework with two contributions: introducing a new differentiable surrogate for expected calibration error (DECE) that allows calibration quality to be directly optimised, and a meta-learning framework that uses DECE to optimise for validation set calibration with respect to model hyper-parameters. The results show that we achieve competitive performance with existing calibration approaches. Our framework opens up a new avenue and toolset for tackling calibration, which we believe will inspire further work on this important challenge.

View on arXiv
Comments on this paper