ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02590
  4. Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation

Optimizing Millions of Hyperparameters by Implicit Differentiation

6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
    DD
ArXivPDFHTML

Papers citing "Optimizing Millions of Hyperparameters by Implicit Differentiation"

50 / 271 papers shown
Title
Generalizable and Stable Finetuning of Pretrained Language Models on
  Low-Resource Texts
Generalizable and Stable Finetuning of Pretrained Language Models on Low-Resource Texts
Sai Ashish Somayajula
Youwei Liang
Abhishek Singh
Li Zhang
Pengtao Xie
32
2
0
19 Mar 2024
BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient
  Low-Rank Adaptation of Large Pre-trained Models
BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models
Rushi Qiang
Ruiyi Zhang
Pengtao Xie
AI4CE
30
8
0
19 Mar 2024
Nonsmooth Implicit Differentiation: Deterministic and Stochastic
  Convergence Rates
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
49
1
0
18 Mar 2024
One Category One Prompt: Dataset Distillation using Diffusion Models
One Category One Prompt: Dataset Distillation using Diffusion Models
Ali Abbasi
Ashkan Shahbazi
Hamed Pirsiavash
Soheil Kolouri
DiffM
DD
40
3
0
11 Mar 2024
Better than classical? The subtle art of benchmarking quantum machine
  learning models
Better than classical? The subtle art of benchmarking quantum machine learning models
Joseph Bowles
Shahnawaz Ahmed
Maria Schuld
47
67
0
11 Mar 2024
Tune without Validation: Searching for Learning Rate and Weight Decay on
  Training Sets
Tune without Validation: Searching for Learning Rate and Weight Decay on Training Sets
Lorenzo Brigato
Stavroula Mougiakakou
45
0
0
08 Mar 2024
Fast and Efficient Local Search for Genetic Programming Based Loss
  Function Learning
Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
49
2
0
01 Mar 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
21
5
0
06 Feb 2024
Glocal Hypergradient Estimation with Koopman Operator
Glocal Hypergradient Estimation with Koopman Operator
Ryuichiro Hataya
Yoshinobu Kawahara
44
2
0
05 Feb 2024
Enhancing Molecular Property Prediction with Auxiliary Learning and
  Task-Specific Adaptation
Enhancing Molecular Property Prediction with Auxiliary Learning and Task-Specific Adaptation
Vishal Dey
Xia Ning
AAML
AI4CE
29
0
0
29 Jan 2024
Constrained Bi-Level Optimization: Proximal Lagrangian Value function
  Approach and Hessian-free Algorithm
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
Wei-Ting Yao
Chengming Yu
Shangzhi Zeng
Jin Zhang
23
13
0
29 Jan 2024
Importance-Aware Adaptive Dataset Distillation
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
30
6
0
29 Jan 2024
Crafter: Facial Feature Crafting against Inversion-based Identity Theft
  on Deep Models
Crafter: Facial Feature Crafting against Inversion-based Identity Theft on Deep Models
Shiming Wang
Zhe Ji
Liyao Xiang
Hao Zhang
Xinbing Wang
Cheng Zhou
Bo-wen Li
24
4
0
14 Jan 2024
TaskMet: Task-Driven Metric Learning for Model Learning
TaskMet: Task-Driven Metric Learning for Model Learning
Dishank Bansal
Ricky T. Q. Chen
Mustafa Mukadam
Brandon Amos
FedML
28
10
0
08 Dec 2023
Using Large Language Models for Hyperparameter Optimization
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
36
51
0
07 Dec 2023
Adaptive Instrument Design for Indirect Experiments
Adaptive Instrument Design for Indirect Experiments
Yash Chandak
Shiv Shankar
Vasilis Syrgkanis
Emma Brunskill
40
4
0
05 Dec 2023
IMMA: Immunizing text-to-image Models against Malicious Adaptation
IMMA: Immunizing text-to-image Models against Malicious Adaptation
Yijia Zheng
Raymond A. Yeh
53
8
0
30 Nov 2023
Gradient-based bilevel optimization for multi-penalty Ridge regression
  through matrix differential calculus
Gradient-based bilevel optimization for multi-penalty Ridge regression through matrix differential calculus
Gabriele Maroni
Loris Cannelli
Dario Piga
22
0
0
23 Nov 2023
Embarassingly Simple Dataset Distillation
Embarassingly Simple Dataset Distillation
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
DD
36
5
0
13 Nov 2023
Behavior Alignment via Reward Function Optimization
Behavior Alignment via Reward Function Optimization
Dhawal Gupta
Yash Chandak
Scott M. Jordan
Philip S. Thomas
Bruno Castro da Silva
31
10
0
29 Oct 2023
Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens
Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens
Ross M. Clarke
José Miguel Hernández-Lobato
54
2
0
23 Oct 2023
Series of Hessian-Vector Products for Tractable Saddle-Free Newton
  Optimisation of Neural Networks
Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation of Neural Networks
E. T. Oldewage
Ross M. Clarke
José Miguel Hernández-Lobato
ODL
25
1
0
23 Oct 2023
You Only Condense Once: Two Rules for Pruning Condensed Datasets
You Only Condense Once: Two Rules for Pruning Condensed Datasets
Yang He
Lingao Xiao
Qiufeng Wang
37
14
0
21 Oct 2023
Farzi Data: Autoregressive Data Distillation
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
25
3
0
15 Oct 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
102
1
0
10 Oct 2023
Learning Layer-wise Equivariances Automatically using Gradients
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
52
12
0
09 Oct 2023
Deep Concept Removal
Deep Concept Removal
Yegor Klochkov
Jean-François Ton
Ruocheng Guo
Yang Liu
Hang Li
23
0
0
09 Oct 2023
Making Scalable Meta Learning Practical
Making Scalable Meta Learning Practical
Sang Keun Choe
Sanket Vaibhav Mehta
Hwijeen Ahn
Willie Neiswanger
Pengtao Xie
Emma Strubell
Eric Xing
58
15
0
09 Oct 2023
FedL2P: Federated Learning to Personalize
FedL2P: Federated Learning to Personalize
Royson Lee
Minyoung Kim
Da Li
Xinchi Qiu
Timothy M. Hospedales
Ferenc Huszár
Nicholas D. Lane
FedML
18
0
0
03 Oct 2023
Unveiling Invariances via Neural Network Pruning
Unveiling Invariances via Neural Network Pruning
Derek Xu
Yizhou Sun
Wei Wang
41
0
0
15 Sep 2023
Differentiable Robust Model Predictive Control
Differentiable Robust Model Predictive Control
Alex Oshin
Hassan Almubarak
Evangelos A. Theodorou
17
5
0
16 Aug 2023
Vision-Language Dataset Distillation
Vision-Language Dataset Distillation
Xindi Wu
Byron Zhang
Zhiwei Deng
Olga Russakovsky
DD
VLM
33
9
0
15 Aug 2023
Influence Function Based Second-Order Channel Pruning-Evaluating True
  Loss Changes For Pruning Is Possible Without Retraining
Influence Function Based Second-Order Channel Pruning-Evaluating True Loss Changes For Pruning Is Possible Without Retraining
Hongrong Cheng
Miao Zhang
Javen Qinfeng Shi
AAML
33
1
0
13 Aug 2023
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Sen-Fon Lin
Daouda Sow
Kaiyi Ji
Yitao Liang
Ness B. Shroff
36
2
0
07 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Learning with Constraint Learning: New Perspective, Solution Strategy
  and Various Applications
Learning with Constraint Learning: New Perspective, Solution Strategy and Various Applications
Risheng Liu
Jiaxin Gao
Xuan Liu
Xin-Yue Fan
40
9
0
28 Jul 2023
Sharpness-Aware Graph Collaborative Filtering
Sharpness-Aware Graph Collaborative Filtering
Huiyuan Chen
Chin-Chia Michael Yeh
Yujie Fan
Yan Zheng
Junpeng Wang
Vivian Lai
Mahashweta Das
Hao Yang
36
5
0
18 Jul 2023
Automated Polynomial Filter Learning for Graph Neural Networks
Automated Polynomial Filter Learning for Graph Neural Networks
Wendi Yu
Zhichao Hou
Xiaorui Liu
24
0
0
16 Jul 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully
  First-Order Oracles
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
Jiaming Zhang
86
2
0
26 Jun 2023
Taming Small-sample Bias in Low-budget Active Learning
Taming Small-sample Bias in Low-budget Active Learning
Linxin Song
Jieyu Zhang
Xiaotian Lu
Dinesh Manocha
AI4CE
22
0
0
19 Jun 2023
Differentiable Instruction Optimization for Cross-Task Generalization
Differentiable Instruction Optimization for Cross-Task Generalization
Masaru Isonuma
Junichiro Mori
Ichiro Sakata
29
0
0
16 Jun 2023
Unbiased Learning of Deep Generative Models with Structured Discrete
  Representations
Unbiased Learning of Deep Generative Models with Structured Discrete Representations
H. Bendekgey
Gabriel Hope
Erik B. Sudderth
OCL
BDL
DRL
30
1
0
14 Jun 2023
AutoML in the Age of Large Language Models: Current Challenges, Future
  Opportunities and Risks
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Alexander Tornede
Difan Deng
Theresa Eimer
Joseph Giovanelli
Aditya Mohan
...
Sarah Segel
Daphne Theodorakopoulos
Tanja Tornede
Henning Wachsmuth
Marius Lindauer
41
23
0
13 Jun 2023
Stepsize Learning for Policy Gradient Methods in Contextual Markov
  Decision Processes
Stepsize Learning for Policy Gradient Methods in Contextual Markov Decision Processes
Luca Sabbioni
Francesco Corda
Marcello Restelli
29
0
0
13 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
36
11
0
06 Jun 2023
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
Chen Fan
Gaspard Choné-Ducasse
Mark Schmidt
Christos Thrampoulidis
30
3
0
30 May 2023
One-step differentiation of iterative algorithms
One-step differentiation of iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
72
13
0
23 May 2023
Effective Bilevel Optimization via Minimax Reformulation
Xiaoyu Wang
Rui Pan
Renjie Pi
Tong Zhang
42
1
0
22 May 2023
Hyperparameter Optimization through Neural Network Partitioning
Hyperparameter Optimization through Neural Network Partitioning
Bruno Mlodozeniec
M. Reisser
Christos Louizos
42
6
0
28 Apr 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with
  ES-Single
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
21
6
0
21 Apr 2023
Previous
123456
Next