Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.02590
Cited By
Optimizing Millions of Hyperparameters by Implicit Differentiation
6 November 2019
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimizing Millions of Hyperparameters by Implicit Differentiation"
50 / 271 papers shown
Title
Generalizable and Stable Finetuning of Pretrained Language Models on Low-Resource Texts
Sai Ashish Somayajula
Youwei Liang
Abhishek Singh
Li Zhang
Pengtao Xie
32
2
0
19 Mar 2024
BiLoRA: A Bi-level Optimization Framework for Overfitting-Resilient Low-Rank Adaptation of Large Pre-trained Models
Rushi Qiang
Ruiyi Zhang
Pengtao Xie
AI4CE
30
8
0
19 Mar 2024
Nonsmooth Implicit Differentiation: Deterministic and Stochastic Convergence Rates
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
49
1
0
18 Mar 2024
One Category One Prompt: Dataset Distillation using Diffusion Models
Ali Abbasi
Ashkan Shahbazi
Hamed Pirsiavash
Soheil Kolouri
DiffM
DD
40
3
0
11 Mar 2024
Better than classical? The subtle art of benchmarking quantum machine learning models
Joseph Bowles
Shahnawaz Ahmed
Maria Schuld
47
67
0
11 Mar 2024
Tune without Validation: Searching for Learning Rate and Weight Decay on Training Sets
Lorenzo Brigato
Stavroula Mougiakakou
45
0
0
08 Mar 2024
Fast and Efficient Local Search for Genetic Programming Based Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
49
2
0
01 Mar 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
21
5
0
06 Feb 2024
Glocal Hypergradient Estimation with Koopman Operator
Ryuichiro Hataya
Yoshinobu Kawahara
44
2
0
05 Feb 2024
Enhancing Molecular Property Prediction with Auxiliary Learning and Task-Specific Adaptation
Vishal Dey
Xia Ning
AAML
AI4CE
29
0
0
29 Jan 2024
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
Wei-Ting Yao
Chengming Yu
Shangzhi Zeng
Jin Zhang
23
13
0
29 Jan 2024
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
30
6
0
29 Jan 2024
Crafter: Facial Feature Crafting against Inversion-based Identity Theft on Deep Models
Shiming Wang
Zhe Ji
Liyao Xiang
Hao Zhang
Xinbing Wang
Cheng Zhou
Bo-wen Li
24
4
0
14 Jan 2024
TaskMet: Task-Driven Metric Learning for Model Learning
Dishank Bansal
Ricky T. Q. Chen
Mustafa Mukadam
Brandon Amos
FedML
28
10
0
08 Dec 2023
Using Large Language Models for Hyperparameter Optimization
Michael Ruogu Zhang
Nishkrit Desai
Juhan Bae
Jonathan Lorraine
Jimmy Ba
36
51
0
07 Dec 2023
Adaptive Instrument Design for Indirect Experiments
Yash Chandak
Shiv Shankar
Vasilis Syrgkanis
Emma Brunskill
40
4
0
05 Dec 2023
IMMA: Immunizing text-to-image Models against Malicious Adaptation
Yijia Zheng
Raymond A. Yeh
53
8
0
30 Nov 2023
Gradient-based bilevel optimization for multi-penalty Ridge regression through matrix differential calculus
Gabriele Maroni
Loris Cannelli
Dario Piga
22
0
0
23 Nov 2023
Embarassingly Simple Dataset Distillation
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
DD
36
5
0
13 Nov 2023
Behavior Alignment via Reward Function Optimization
Dhawal Gupta
Yash Chandak
Scott M. Jordan
Philip S. Thomas
Bruno Castro da Silva
31
10
0
29 Oct 2023
Studying K-FAC Heuristics by Viewing Adam through a Second-Order Lens
Ross M. Clarke
José Miguel Hernández-Lobato
54
2
0
23 Oct 2023
Series of Hessian-Vector Products for Tractable Saddle-Free Newton Optimisation of Neural Networks
E. T. Oldewage
Ross M. Clarke
José Miguel Hernández-Lobato
ODL
25
1
0
23 Oct 2023
You Only Condense Once: Two Rules for Pruning Condensed Datasets
Yang He
Lingao Xiao
Qiufeng Wang
37
14
0
21 Oct 2023
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
25
3
0
15 Oct 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
102
1
0
10 Oct 2023
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
52
12
0
09 Oct 2023
Deep Concept Removal
Yegor Klochkov
Jean-François Ton
Ruocheng Guo
Yang Liu
Hang Li
23
0
0
09 Oct 2023
Making Scalable Meta Learning Practical
Sang Keun Choe
Sanket Vaibhav Mehta
Hwijeen Ahn
Willie Neiswanger
Pengtao Xie
Emma Strubell
Eric Xing
58
15
0
09 Oct 2023
FedL2P: Federated Learning to Personalize
Royson Lee
Minyoung Kim
Da Li
Xinchi Qiu
Timothy M. Hospedales
Ferenc Huszár
Nicholas D. Lane
FedML
18
0
0
03 Oct 2023
Unveiling Invariances via Neural Network Pruning
Derek Xu
Yizhou Sun
Wei Wang
41
0
0
15 Sep 2023
Differentiable Robust Model Predictive Control
Alex Oshin
Hassan Almubarak
Evangelos A. Theodorou
17
5
0
16 Aug 2023
Vision-Language Dataset Distillation
Xindi Wu
Byron Zhang
Zhiwei Deng
Olga Russakovsky
DD
VLM
33
9
0
15 Aug 2023
Influence Function Based Second-Order Channel Pruning-Evaluating True Loss Changes For Pruning Is Possible Without Retraining
Hongrong Cheng
Miao Zhang
Javen Qinfeng Shi
AAML
33
1
0
13 Aug 2023
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Sen-Fon Lin
Daouda Sow
Kaiyi Ji
Yitao Liang
Ness B. Shroff
36
2
0
07 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
Learning with Constraint Learning: New Perspective, Solution Strategy and Various Applications
Risheng Liu
Jiaxin Gao
Xuan Liu
Xin-Yue Fan
40
9
0
28 Jul 2023
Sharpness-Aware Graph Collaborative Filtering
Huiyuan Chen
Chin-Chia Michael Yeh
Yujie Fan
Yan Zheng
Junpeng Wang
Vivian Lai
Mahashweta Das
Hao Yang
36
5
0
18 Jul 2023
Automated Polynomial Filter Learning for Graph Neural Networks
Wendi Yu
Zhichao Hou
Xiaorui Liu
24
0
0
16 Jul 2023
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Le‐Yu Chen
Yaohua Ma
Jiaming Zhang
86
2
0
26 Jun 2023
Taming Small-sample Bias in Low-budget Active Learning
Linxin Song
Jieyu Zhang
Xiaotian Lu
Dinesh Manocha
AI4CE
22
0
0
19 Jun 2023
Differentiable Instruction Optimization for Cross-Task Generalization
Masaru Isonuma
Junichiro Mori
Ichiro Sakata
29
0
0
16 Jun 2023
Unbiased Learning of Deep Generative Models with Structured Discrete Representations
H. Bendekgey
Gabriel Hope
Erik B. Sudderth
OCL
BDL
DRL
30
1
0
14 Jun 2023
AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks
Alexander Tornede
Difan Deng
Theresa Eimer
Joseph Giovanelli
Aditya Mohan
...
Sarah Segel
Daphne Theodorakopoulos
Tanja Tornede
Henning Wachsmuth
Marius Lindauer
41
23
0
13 Jun 2023
Stepsize Learning for Policy Gradient Methods in Contextual Markov Decision Processes
Luca Sabbioni
Francesco Corda
Marcello Restelli
29
0
0
13 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
36
11
0
06 Jun 2023
BiSLS/SPS: Auto-tune Step Sizes for Stable Bi-level Optimization
Chen Fan
Gaspard Choné-Ducasse
Mark Schmidt
Christos Thrampoulidis
30
3
0
30 May 2023
One-step differentiation of iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
72
13
0
23 May 2023
Effective Bilevel Optimization via Minimax Reformulation
Xiaoyu Wang
Rui Pan
Renjie Pi
Tong Zhang
42
1
0
22 May 2023
Hyperparameter Optimization through Neural Network Partitioning
Bruno Mlodozeniec
M. Reisser
Christos Louizos
42
6
0
28 Apr 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
21
6
0
21 Apr 2023
Previous
1
2
3
4
5
6
Next